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Abstract For the purpose of characterizing the stereochemistry and stereoisomerism
of oxirane derivatives, the RS-stereoisomeric group C2vσ̃̂I of order 8 has been defined
by starting point group C2v of order 4, which specifies the geometric features of an
oxirane skeleton. The isomorphism between C2vσ̃̂I and the point group D2h of order 8
is discussed algebraically and diagrammatically. The data necessary to combinatorial
enumeration under C2vσ̃̂I , e.g., the non-redundant set of subgroups, the subduction of
coset representations, and the inverse of the mark table, are prepared by referring to the
data of D2h . The fixed-point-matrix method and the partial-cycle-index method, which
have been originally developed to accomplish combinatorial enumeration under point
groups in the unit-subduced-cycle-index approach (Fujita in Symmetry and combi-
natorial enumeration in chemistry. Springer, Berlin, 1991), are extended and applied
to the combinatorial enumeration of oxirane derivatives under the RS-stereoisomeric
group C2vσ̃̂I . Thereby, the numbers of inequivalent quadruplets are calculated in an
itemized fashion with respect to the subgroups of C2vσ̃̂I , where each quadruplet con-
tained in a stereoisogram is counted once. Such quadruplets are further categorized
into five types (type I–V). The enumeration of oxiranes under the point group C2v

as well as under the RS-permutation group C2σ̃ is also conducted and the results are
compared with those of the RS-stereoisomeric group C2vσ̃̂I .
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1 Introduction

Chiral three-membered heterocycles shown in Fig. 1 have attracted the interests of
organic chemists as targets or intermediates for organic syntheses. Several reviews [1–
3] have surveyed synthetic aspects of chiral oxiranes and aziridines. In particular, the
Katsuki-Sharpless asymmetric epoxidation and related methods [4,5] have attracted
wide interests of organic chemists, as found in many review articles [6–9]. A remark-
able milestone of this field has been the Nobel Prize in Chemistry 2001 awarded to
Sharpless [10]. As for chiral aziridines, the absolute configuration of 2-phenylaziridine
and its derivatives has been reported by us [11], and synthetic applications of chiral
aziridines have been reviewed [12]. As for chiral thiiranes, asymmetric synthesis of
them from aldehydes has been reported [13].

In spite of these brilliant progresses in the synthesis of chiral three-membered
rings, the total features of their stereoisomerism have not been fully investigated, e.g.,
the numbers of three-dimensional (3D) structures which are derived by placing four
ligands on the four positions of the skeleton 1, their symmetrical features for categoriz-
ing three-membered heterocycles as 3D structures, and theoretical and mathematical
foundations for assigning stereochemical descriptors such as R/S-stereodescriptors of
the Cahn–Ingold–Prelog (CIP) system. These items should be clarified by developing
rational mathematical foundations for the purpose of discussing the total features of
stereoisomerism of three-membered heterocycles.

In order to discuss geometrical features of organic compounds as 3D structures,
I have pointed out the importance of coset representations and equivalence classes
(orbits), where subduction of coset representations and sphericities of orbits have
been emphasized as new concepts in qualitative and quantitative discussions on stere-
ochemistry, as shown in articles [14–17] and reviews [18,19]. After unit subduced
cycle indices with chirality fittingness (USCI-CFs) were proposed on the basis of these
concepts, four methods of combinatorial enumeration have been developed under the
collective name the unit-subduced-cycle-index (USCI) approach [20–24]. On the other
hand, the proligand method has been developed as a more succinct method of combina-
torial enumeration of 3D structures [25–27] and applied to combinatorial enumeration
of monosubstituted alkanes [28–30] and alkanes [31–35], as summarized in a review
[36] and a monograph [37]. The proligand–promolecule model has been proposed to
enumerate organic compounds with rotatable ligands [38].

In addition, I have developed the stereoisogram approach by staring from a
newly-defined concept of stereoisograms, which consists of a quadruplet of promole-
cules. Such stereoisograms are diagrammatic expressions of RS-stereoisomeric groups
defined by integrating point-groups and RS-permutation groups, where the latter are
generated by the restriction of usual permutation groups [39–41]. The quadruplet of

Fig. 1 Skeletons for
three-membered heterocycles
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X = O: oxirane, epoxide
X = S: thiirane, episulfide
X = NH: aziridine
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promolecules in a stereoisogram is characterized by three types of relationships, i.e.,
enantiomeric, RS-diastereomeric, and holantimeric relationships [39,42]. Thereby,
stereoisograms are categorized into five types, as proven in general [43].

The original version of the USCI approach [23,24] has been applied to the com-
binatorial enumeration of 3D structures under point groups, as shown in a recent
report [44–46]. The USCI approach can be extended by incorporating the stereoiso-
gram approach, so that it becomes capable of enumerating 3D structures under RS-
stereoisomeric groups [47,48]. This means that the combination of the USCI approach
with the stereoisogram approach is ready to conduct combinatorial enumeration of
three-membered heterocycles under the corresponding RS-stereoisomeric group. This
is the target of the present article as Part I of the present series.

2 The proligand–promolecule model for the oxirane skeleton

For the sake of simplicity, we select an oxirane skeleton 2 (Fig. 2) as a representative of
three-membered heterocycles 1 (Fig. 1). The importance of the proligand–promolecule
model [38] has been demonstrated by examining rigid polycyclic skeletons such as
a prismane skeleton [49,50] and an adamantane skeleton [51]. The crux is the fact
that the chirality or achirality of each proligand, which is decided in isolation (when
detached), is identical with the chirality or achirality of the corresponding ligand with a
concrete 3D structure. Note that influences due to conformational changes are avoided
in terms of the proligand–promolecule model. Throughout the present article, a pair
of symbols or compound numbers without and with an overbar represents a pair of
enantiomeric entities (proligands, promolecules, ligands, molecules, etc.) in isolation.

The proligand–promolecule model can be applied to the oxirane skeleton 2, which
is regarded as a rigid stereoskeleton with four substitution positions (Fig. 2). These
positions are numbered sequentially from 1 to 4, where the initial mode of numbering
is arbitrary without losing generality.

A set of proligands is selected from a given proligand inventory:

L = {A, B, X, Y; p, p, q, q, r, r, s, s}, (1)

where the symbols, A, B, X, and Y, denote achiral proligands, while the paired symbols,
p/p, q/q, r/r, and s/s, denote chiral proligands having opposite chirality senses. For
example, a set of proligands, A, B, X, and Y, is applied to the skeleton 2 so as to
generate a promolecule represented by 3. Then, a molecule 4 is generated by the
substitution of A = CH3, B = CH2CH3, X = H, and Y = H.

Fig. 2 The proligand–promolecule model for an oxirane skeleton
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The oxirane skeleton 2 belongs to the point group C2v (order 4). Under the action
of C2v , the orbits contained in 2 are characterized by coset representations such as
C2v(/C1) for the four substitution positions, C2v(/C′

s) for the two skeletal carbons,
and C2v(/C2v) for the oxygen atom [15]. By adopting the numbering shown in 2, the
coset representation C2v(/C1) is obtained as follows (cf. Table 1 of [15]):

C2v = {

I, C2, σv(1), σv(2)

}

(2)

C2v(/C1) =
{

(1)(2)(3)(4), (1 4)(2 3), (1 2)(3 4), (1 3)(2 4)
}

, (3)

where an overbar indicates the alternation of the chirality sense of each substitution
position. During the generation of a promolecule, the point group C2v is restricted
to one of the subgroups (e.g., C1 for the promolecule 3), where the restriction is
characterized by the subduction of coset representations (e.g., C2v(/C1) ↓ C1 =
4C1(/C1) for the promolecule 3) according to the USCI approach [23].

3 RS-stereoisomeric group for the oxirane skeleton

The operations of the point group C2v are listed in the left part of Table 1 (two
rotations in the upper-left part A and two reflections in the lower-left part B). Hence,
the following coset decomposition is obtained:

C2v = C2 + σC2, (4)

where the representative σ is selected to be σv(1) or σv(2). These operations correspond
to the symmetry elements illustrated in the top-view 6 (Fig. 3). Note that the oxygen
atom with its valence bonds is hidden under the central C–C bond of the oxirane
skeleton in the top-view represented by 6.

By starting from the proper rotations of C2v , i.e., I ∼ (1)(2)(3)(4) and C2 ∼
(1 4)(2 3), the corresponding ligand reflections (the lower-right part D) are generated
as follows: ̂I ∼ (1)(2)(3)(4) and ̂C2 ∼ (1 4)(2 3), where the chirality sense of each
position is changed into the opposite chirality sense as denoted by an overbar. The
resulting ligand-reflection group is represented as follows:

C2̂I = C2 + ̂I C2 (5)

By starting from the reflections of C2v , i.e., σv(1) ∼ (1 2)(3 4) and σv(2) ∼
(1 3)(2 4), the corresponding RS-permutations (the upper-right part C) are gener-
ated as follows: σ̃v(1) ∼ (1 2)(3 4) and σ̃v(2) ∼ (1 3)(2 4), where the chirality sense
of each position is retained to be unchanged. The resulting RS-permutation group is
represented as follows:

C2σ̃ = C2 + σ̃C2 (6)

where the representative σ̃ is selected to be σ̃v(1) or σ̃v(2).
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Table 1 Operations of C2vσ̃̂I and coset representation of C2vσ̃̂I (/C
̂I ) versus operations of D2h and coset

representation of D2h(/C′′
s )

Fig. 3 An oxirane skeleton (2) and an ethylene skeleton (5). The top-view 6 shows the symmetry elements
of the RS-stereoisomeric group C2vσ̃̂I for the oxirane skeleton (2), while the top-view 7 shows the symmetry
elements of the isomorphic point group D2h for the ethylene skeleton (5)

The coset decompositions represented by Eqs. 4, 5, and 6 are integrated to generate
an RS-stereoisomeric group for characterizing the oxirane skeleton (2) as follows:

C2vσ̃̂I = C2 + σC2 + σ̃C2 + ̂I C2, (7)

the operations of which are listed in the (g ∈ C2vσ̃̂I )-column of Table 1. The coset
representation C2v(/C1) under the point group C2v is extended to give the coset
representation C2vσ̃̂I (/C

̂I ) under the RS-stereoisomeric group C2vσ̃̂I , as listed in
Table 1.
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Fig. 4 Elementary
stereoisogram for an oxirane
skeleton

4 Stereoisograms for the oxirane skeleton

4.1 Construction of stereoisograms

Because the subgroup C2 is a normal subgroup of C2vσ̃̂I (Eq. 7), the corresponding
factor group can be constructed as follows:

C2vσ̃̂I /C2 = {

C2, σC2, σ̃C2, ̂I C2
}

, (8)

which is isomorphic to the Klein four-group of order 4 or to the point group C2v .
Let the oxirane skeleton 2 correspond to the identity operation I (∼ (1)(2)(3)(4)),

which is a representative of the coset C2 (= I C2) contained in the factor group
C2vσ̃̂I /C2 (Eq. 8). Then, the other representatives of the cosets contained in Eq. 8
correspond to the numbered skeletons shown in Fig. 4, i.e., 2 to σv(1) (∼ (1 3)(2 4)),
8 to σ̃v(1) (∼ (1 3)(2 4)), and 8 to ̂I (∼ (1)(2)(3)(4)). These four numbered skeletons
are collected to give an elementary stereoisogram shown in Fig. 4. As found easily,
each skeleton (2, 2, 8, or 8) in Fig. 4 generates a set of homomers under the action of
C2, so that it can be regarded as a diagrammatic representative of each coset appearing
in the factor group C2vσ̃̂I /C2 (Eq. 8).

When a set of proligands, A (at position 1), B (at position 2), X (at position 3), and
Y (at position 4), is applied to the elementary stereoisogram (Fig. 4), there appears
a stereoisogram shown in Fig. 5. The stereoisogram (Fig. 5) is characterized by the
presence of diagonal equality symbols, so that it is categorized to type I (chiral, RS-
stereogenic, and ascleral).

In general, a stereoisogram contains three kinds of relationships, i.e., (self-) enan-
tiomeric relationships (along the vertical direction), (self-)RS-diastereomeric relation-
ships (along the horizontal direction), and (self-)holantimeric relationships (along
the diagonal direction). These relationships correspond to chirality/achirality, RS-
stereogenicity/RS-astereogenicity, and sclerality/asclerality, respectively. A relation-
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Fig. 5 Stereoisogram of type I
derived from the oxirane
skeleton 2, where the proligand
A is placed at position 1, B at
position 2, X at position 3, and
Y at position 4. Note that the
proligands A, B, X, and Y are
achiral in isolation. The
reference promolecule 3 belongs
to the RS-stereoisomeric group
C

̂I

ship with the prefix ‘self-’ is denoted by an equality symbol, so that the diagonal
equality symbols in Fig. 5 represent self-holantimeric relationships (due to ascleral-
ity).

By placing proligands selected from the proligand inventory (Eq. 1), the elementary
stereoisogram (Fig. 4) is converted into a stereoisogram which contains a quadruplet of
promolecules produced according to the proligand–promolecule model. There appear
stereoisograms of five types, which are schematically shown in Fig. 6. The symbols
A and A (or B and B) represent a pair of enantiomers based on a given skeleton (e.g.,
an oxirane skeleton). For example, Fig. 5 is an example of the type-I stereoisogram
shown in Fig. 6, where the A at the upper-left position is selected to be equal to the
promolecule 3.

4.2 Stereoisograms of five types

Just as the Klein four-group has five subgroups, the factor group C2vσ̃̂I /C2 (Eq. 8) has
five subgroups in accord with the general discussions on RS-stereoisomeric groups
[43]:

Type I: C2̂I /C2 = {C2, ̂I C2} (cf. Eq. 5) (9)

Type II: C2σ̃ /C2 = {C2, σ̃C2} (cf. Eq. 6) (10)

Type III: C2/C2 = {C2} (11)

Type IV: C2vσ̃̂I /C2 = {C2, σC2, σ̃C2, ̂I C2} (cf. Eqs. 7 and 8) (12)

Type V: C2v/C2 = {C2, σC2} (cf. Eq. 4) (13)

The five subgroups listed in Eqs. 9–13 correspond to the stereoisograms of five
types collected in Fig. 6. Because Eq. 9 corresponds to C2̂I (Eq. 5), it is characterized
by the presence of a diagonal equality symbol, as found in the type-I stereoisogram
shown in Fig. 6. Because Eq. 10 corresponds to C2σ̃ (Eq. 6), it is characterized by
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Fig. 6 Stereoisograms for representing RS-stereoisomers of five types. This figure is a modification of
Fig. 6 of [42] and of Fig. 2 of [52], where the subgroups of C2vσ̃̂I for characterizing respective types are

shown along with three attributes. The symbols A and A (or B and B) represent a pair of enantiomers based
on a given skeleton (e.g., an oxirane skeleton), where the A at the upper-left position of each stereoisogram
is selected from the promolecules enumerated in the present article

the presence of a horizontal equality symbol, as found in the type-II stereoisogram
shown in Fig. 6. Because Eq. 13 corresponds to C2v (Eq. 4), it is characterized by the
presence of a vertical equality symbol, as found in the type-V stereoisogram shown
in Fig. 6. As an extreme case, Eq. 11 corresponding to C2 is characterized by the
absence of equality symbols in any directions, as found in the type-III stereoisogram
shown in Fig. 6. As another extreme case, Eq. 12 corresponding to C2vσ̃̂I (Eq. 7)
indicates the presence of equality symbols in all of the directions, as found in the
type-IV stereoisogram shown in Fig. 6.
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5 Subgroups of the RS-stereoisomeric group for the oxirane skeleton

5.1 Isomorphism between the RS-stereoisomeric group C2vσ̃̂I and the point group
D2h

By comparing the operations of the RS-stereoisomeric group C2vσ̃̂I with those of the
point group D2h (Table 1), they are determined to be isomorphic. The correspondence
between the operations of them is clarified by comparing the top-view 6 (for the oxirane
skeleton 2 of C2vσ̃̂I ) and the counterpart top-view 7 (for the ethylene skeleton 5 of
D2h). It should be noted that the coset decomposition represented by Eq. 7 corresponds
to the coset representation of the point group D2h :

D2h = C2 + σv(1)C2 + C2(1)C2 + σhC2. (14)

The isomorphism between C2vσ̃̂I and D2h means that the data of the point group D2h

(e.g., the non-redundant set of subgroups, a mark table, an inverse mark able, subduc-
tion of coset representation, unit subduced cycle indices with and without chirality
fittingness) [53,54] can be used in the discussions on the RS-stereoisomeric group
C2vσ̃̂I after necessary modifications.

The point group D2h has a non-redundant set of subgroups (SSG) containing 16
subgroups up to conjugacy, where the subgroups are aligned in the ascending order of
their orders [53,54]:

SSGD2h =
{

1
C1,

2
C2,

3
C′

2,
4

C′′
2,

5
Cs,

6
C′

s,
7

C′′
s ,

8
Ci ,

9
C2v,

10
C′

2v,

11
C′′

2v,
12

C2h,
13

C′
2h,

14
C′′

2h,
15
D2,

16
D2h

}

. (15)

These subgroups are numbered sequentially for the sake of cross reference. The oper-
ations contained in each of these subgroups (Eq. 15) are listed in the right part of
Table 2.

Because of isomorphism, the RS-stereoisomeric group C2vσ̃̂I is characterized by a
non-redundant set of subgroups (SSG) as follows:

SSGC2vσ̃̂I
=

{

1
C1,

2
C2,

3
Cσ̃ ,

4
C′̃

σ ,
5

Cs,
6

C′
s,

7
C

̂I ,
8

Cσ̂ ,
9

C2v,
10

Csσ̃̂I ,

11
C′

sσ̃̂I
,

12
C2̂I ,

13
Csσ̃ σ̂ ,

14
C′

sσ̃ σ̂ ,
15

C2σ̃ ,
16

C2vσ̃̂I

}

, (16)

where the subgroups are numbered sequentially for the sake of cross reference to the
SSG of the isomorphic point group D2h . The operations contained in each of these
subgroups (Eq. 16) are listed in the left part of Table 2.

As found in the left part of Table 2, the notation of each subgroup consist of a
boldfaced letter and the first subscript due to its maximum point group (e.g., C2v for
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C2vσ̃̂I ), which are attached by the additional subscript σ̃ due to the membership of
RS-permutations (e.g., σ̃ for C2vσ̃̂I ) and/or the further additional subscript ̂I (or σ̂ )
due to the membership of ligand reflections (e.g., ̂I for C2vσ̃̂I ).

5.2 Type I to V assigned to the subgroups of the RS-stereoisomeric group C2vσ̃̂I

The data listed in Eqs. 9–13 indicate the maximum subgroup of each type, i.e., C2̂I for
type-I stereoisograms, C2σ̃ for type-II stereoisograms, C2 for type-III stereoisograms,
C2vσ̃̂I for type-IV stereoisograms, and C2v for type-V stereoisograms. Thereby, the
subgroups listed in Eq. 16 are categorized into five types, as summarized in the type-
column of Table 2. For example, the subgroup Cσ̃ in the third row of Table 2 is
concluded to be type II, because the subgroup Cσ̃ is a subgroup of the maximum sub-
group C2σ̃ of type II appearing in the 15th row. The subgroups of the RS-stereoisomeric
group C2vσ̃̂I are categorized into type I to V (Table 2) so as to give SG[I]–SG[V]:

SG[I] =
{

7
C

̂I ,
8

Cσ̂ ,
12

C2̂I

}

(17)

SG[II] =
{

3
Cσ̃ ,

4
C′̃

σ ,
15

C2σ̃

}

(18)

SG[III] =
{

1
C1,

2
C2

}

(19)

SG[IV] =
{

10
Csσ̃̂I ,

11
C′

sσ̃̂I
,

13
Csσ̃ σ̂ ,

14
C′

sσ̃ σ̂ ,
16

C2vσ̃̂I

}

(20)

SG[V] =
{

5
Cs,

6
C′

s,
9

C2v

}

(21)

These sets of subgroups are attached to the stereoisograms of the respective types
shown in Fig. 6.

5.3 Subduction of the coset representation C2vσ̃̂I (/C
̂I )

Each of the four substitution positions in the oxirane skeleton 2 is fixed by the subgroup
C

̂I under the action of the RS-stereoisomeric group C2vσ̃̂I . In other words, the local
symmetry of each position of the oxirane skeleton 2 is determined to be C

̂I under the
global symmetry C2vσ̃̂I . The coset decomposition of C2vσ̃̂I by C

̂I is represented as
follows:

C2vσ̃̂I = C
̂I + σv(1)ĈI + σv(2)ĈI + C2C

̂I , (22)

which generates the coset representation C2vσ̃̂I (/C
̂I ) for characterizing the four posi-

tions of the oxirane skeleton 2, as collected in Table 1.
Because the subgroup C

̂I corresponds to the subgroup C′′
s of the point group D2h

(the 7th row of Table 2), the coset decomposition (Eq. 22) corresponds to the following
coset decomposition of D2h :
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Table 3 Subduction of the coset representation C2vσ̃̂I (/C
̂I )

j Ǵ j Type C2vσ̃̂I (/C
̂I ) ↓ Ǵ j USCI-CF

1 C1 III 4C1(/C1) b4
1

2 C2 III 2C2(/C1) b2
2

3 Cσ̃ II 2Cσ̃ (/C1) b2
2

4 C′̃
σ II 2C′̃

σ (/C1) b2
2

5 Cs V 2Cs (/C1) c2
2

6 C′
s V 2C′

s (/C1) c2
2

7 C
̂I I 4C

̂I (/C
̂I ) a4

1

8 Cσ̂ I 2Cσ̂ (/C1) c2
2

9 C2v V 2C2v(/C1) c4

10 Csσ̃̂I IV 2Csσ̃̂I (/C
̂I ) a2

2

11 C′
sσ̃̂I

IV 2C′
sσ̃̂I

(/C
̂I ) a2

2

12 C2̂I I 2C2̂I (/C
̂I ) a2

2

13 Csσ̃ σ̂ IV Csσ̃ σ̂ (/C1) c4

14 C′
sσ̃ σ̂ IV C′

sσ̃ σ̂ (/C1) c4

15 C2σ̃ II C2σ̃ (/C1) b4

16 C2vσ̃̂I IV C2vσ̃̂I (/C
̂I ) a4

D2h = C′′
s + σv(1)C′′

s + σv(2)C′′
s + C2(3)C′′

s . (23)

It follows that the coset representation D2h(/C′′
s ) derived from Eq. 23 consists of an

identical set of products of cycles with the coset representation C2vσ̃̂I (/C
̂I ) derived

from Eq. 22, as shown in Table 1.
The subduction of coset representations is a central concept of the USCI approach

[23]. Because of the isomorphism between D2h and C2vσ̃̂I , the data of the subduction of
D2h(/C′′

s ) (Table 1 of [54]) can be used to generate the counterpart data of C2vσ̃̂I (/C
̂I ),

as collected in Table 3. Note that the subduction D2h(/C′′
s ) ↓ G j for G j ∈ SSGD2h

(Eq. 15) corresponds to the subduction C2vσ̃̂I (/C
̂I ) ↓ Ǵ j for Ǵ j ∈ SSGC2vσ̃̂I

(Eq. 16),

where each subgroup Ǵ j corresponds to the subgroup G j as shown in Table 2.
Subgroups of an RS-stereoisomeric group are categorized into ex-chiral or ex-

achiral groups, where the prefix ‘ex’ is an abbreviation of the word ‘extended’ [47,48].
Thereby, a subgroup of type II or III is categorized to be ex-chiral (due to the absence
of reflections and ligand reflections), while a subgroup of type I, IV, or V is categorized
to be ex-achiral (due to the presence of reflections and ligand reflections). Then, the
extended sphericity of a coset representation Ǵ(/Ǵ j ) is defined as follows:

homospheric for an achiral Ǵ and an achiral Ǵ j ,
enantiospheric for an achiral Ǵ and a chiral Ǵ j , and
hemispheric for a chiral Ǵ and a chiral Ǵ j ,
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which are characterized respectively by sphericity indices, ad , cd , and bd (d =
|Ǵ|/|Ǵ j |), when the USCI approach [23] is applied in an extended fashion.

From the subduction data collected in the (C2vσ̃̂I (/C
̂I ) ↓ Ǵ j )-column of Table 3,

the corresponding USCI-CF (unit subduced cycle index with chirality faithfulness) is
calculated in a parallel way to the calculation of the USCI-CFs for the point group
D2h (cf. Table 1 of [54]). Each USCI-CF is a product of sphericity indices, which
are assigned to the respective coset representations contained in the subduction data
[23]. For example, the subduction 2C2(/C1) in the second row gives a USCI-CF
b2

2, because a sphericity index b2 is assigned to each coset representation C2(/C1),
which is determined to be hemispheric and to have degree 2 (|C2|/|C1| = 2/1 = 2).
The resulting USCI-CFs for the subduction C2vσ̃̂I (/C

̂I ) ↓ Ǵ j are collected in the
(UCSI-CF)-column of Table 3.

6 Combinatorial enumeration under the RS-stereoisomeric group C2vσ̃ ̂I

6.1 The fixed-point matrix method of the USCI approach

Although the fixed-point matrix (FPM) method of the USCI approach has been origi-
nally developed for the purpose of itemized enumeration under the point groups [23],
it can be applied to the present enumeration under the RS-stereoisomeric group C2vσ̃̂I ,
where the original procedure [23] is useful by adopting extended sphericities described
above. For an application of the FPM method to the RS-stereoisomeric group Tdσ̃̂I ,
see [47].

6.1.1 Fixed-point vectors for symmetry-itemized enumeration

According to Def. 19.3 of [23], each of the USCI-CFs collected in Table 3 can be
used as a subduced cycle index with chirality fittingness (SCI-CF), because the four
positions of the oxirane skeleton 2 construct a single orbit under the RS-stereoisomeric
group C2vσ̃̂I .

Suppose that substituents for the four positions of the oxirane skeleton 2 are selected
from the proligand inventory represented by Eq. 1. Then, we use the following ligand-
inventory functions (Lemma 19.2 of [23]):

ad = Ad + Bd + Xd + Yd (24)

cd = Ad + Bd + Xd + Yd + 2pd/2pd/2 + 2qd/2qd/2 + 2rd/2rd/2 + 2sd/2sd/2

(25)

bd = Ad + Bd + Xd + Yd + pd + qd + rd + sd + pd + qd + rd + sd . (26)

These ligand-inventory functions are introduced into each SCI-CF (the same as the
USCI-CF for the corresponding subgroup collected in Table 3) to give a generating
function, which is a polynomial concerning A, B, X, Y, p, p, q, q, r, r, s, and s.
The coefficient of the term AaBbXx Yyppppqqqq rr qr ssqs in each generating function
indicates the number of fixed promolecules to be counted. This term can be represented
by the following partition:
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[θ ] = [a, b, x, y; p, p, q, q, r, r , s, s], (27)

where we put a ≥ b ≥ x ≥ y, p ≥ p, q ≥ q , r ≥ r , s ≥ s, and p ≥ q ≥ r ≥ s,
because A, B, etc. appear symmetrically in general.

For the purpose of systematic enumeration of epoxides, the same partitions as
adopted in the enumeration of tetrahedral promolecules [47] can be used as follows:

[θ ]1 = [4, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] (for A4 etc.) (28)

[θ ]2 = [3, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] (for A3B etc.) (29)

[θ ]3 = [3, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] (for A3p etc.) (30)

[θ ]4 = [2, 2, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] (for A2B2 etc.) (31)

[θ ]5 = [2, 0, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] (for A2p2 etc.) (32)

[θ ]6 = [2, 1, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0] (for A2BX etc.) (33)

[θ ]7 = [2, 1, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] (for A2Bp etc.) (34)

[θ ]8 = [2, 0, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] (for A2pp etc.) (35)

[θ ]9 = [2, 0, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] (for A2pq etc.) (36)

[θ ]10 = [1, 1, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0] (for ABXY) (37)

[θ ]11 = [1, 1, 1, 0; 1, 0, 0, 0, 0, 0, 0, 0] (for ABXp etc.) (38)

[θ ]12 = [1, 1, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] (for ABp2 etc.) (39)

[θ ]13 = [1, 1, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] (for ABpp etc.) (40)

[θ ]14 = [1, 1, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] (for ABpq etc.) (41)

[θ ]15 = [1, 0, 0, 0; 3, 0, 0, 0, 0, 0, 0, 0] (for Ap3 etc.) (42)

[θ ]16 = [1, 0, 0, 0; 2, 1, 0, 0, 0, 0, 0, 0] (for Ap2p etc.) (43)

[θ ]17 = [1, 0, 0, 0; 2, 0, 1, 0, 0, 0, 0, 0] (for Ap2q etc.) (44)

[θ ]18 = [1, 0, 0, 0; 1, 1, 1, 0, 0, 0, 0, 0] (for Appq etc.) (45)

[θ ]19 = [1, 0, 0, 0; 1, 0, 1, 0, 1, 0, 0, 0] (for Apqr etc.) (46)

In addition, partitions with no achiral proligands are listed as follows:

[θ ]20 = [0, 0, 0, 0; 4, 0, 0, 0, 0, 0, 0, 0] (for p4 etc.) (47)

[θ ]21 = [0, 0, 0, 0; 3, 1, 0, 0, 0, 0, 0, 0] (for p3p etc.) (48)

[θ ]22 = [0, 0, 0, 0; 3, 0, 1, 0, 0, 0, 0, 0] (for p3q etc.) (49)

[θ ]23 = [0, 0, 0, 0; 2, 2, 0, 0, 0, 0, 0, 0] (for p2p2 etc.) (50)

[θ ]24 = [0, 0, 0, 0; 2, 1, 1, 0, 0, 0, 0, 0] (for p2pq etc.) (51)

[θ ]25 = [0, 0, 0, 0; 2, 0, 2, 0, 0, 0, 0, 0] (for p2q2 etc.) (52)

[θ ]26 = [0, 0, 0, 0; 2, 0, 1, 1, 0, 0, 0, 0] (for p2qq etc.) (53)

[θ ]27 = [0, 0, 0, 0; 2, 0, 1, 0, 1, 0, 0, 0] (for p2qr etc.) (54)

[θ ]28 = [0, 0, 0, 0; 1, 1, 1, 1, 0, 0, 0, 0] (for ppqq etc.) (55)

[θ ]29 = [0, 0, 0, 0; 1, 1, 1, 0, 1, 0, 0, 0] (for ppqr etc.) (56)
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[θ ]30 = [0, 0, 0, 0; 1, 0, 1, 0, 1, 0, 1, 0] (for pqrs etc.) (57)

For example, the ligand-inventory functions (Eqs. 24–26) are introduced into the
SCI-CF (USCI-CF) c2

2 for C2vσ̃̂I (/C
̂I ) ↓ Cs (the 5th row of Table 3). The resulting

equation is expanded to give the following generating function:

gCs = (A2 + B2 + X2 + Y2 + 2pp + 2qq + 2rr + 2ss)2

= {A4 + B4 + X4 + Y4}[θ]1 + {2A2B2 + 2A2X2 + · · · }[θ]4

+{4A2pp + 4A2qq + · · · }[θ]8 + {4p2p2 + 4p2q2 + · · · }[θ]23

+{8ppqq + 8pprr + · · · }[θ]28 (58)

where a partition selected form [θ ]i (i = 1–30) is attached to each pair of braces. Let
the symbol ρ[θ]i Ǵ j

be the number of fixed points (fixed promolecule), which appears

as the coefficient of the term corresponding to [θ ]i (i = 1–30) and Ǵ j (⊂ D2dσ̃̂I ).
The terms in the right-hand side of Eq. 58 give the following values:

ρ[θ]1Cs = 1, ρ[θ]4Cs = 2, ρ[θ]8Cs = 4, ρ[θ]23Cs = 4, ρ[θ]28Cs = 8, (59)

where the remaining values are equal to zero, i.e., ρ[θ]i Cs = 0. By examining all of the
subgroups collected Table 3, the USCI-CFs are treated similarly so as to give ρ[θ]i Ǵ j

for Ǵ j (∈ SSGD2dσ̃̂I
) and for [θ ]i (i = 1–30). The resulting values of ρ[θ]i Ǵ j

are
collected to give a fixed-point matrix (FPM) as a 30 × 16 matrix, where the 19 × 16
part (FPM1) concerning achiral and chiral proligands is represented as follows:

FPM1 =

[θ ]1
[θ ]2
[θ ]3
[θ ]4
[θ ]5
[θ ]6
[θ ]7
[θ ]8
[θ ]9
[θ ]10
[θ ]11
[θ ]12
[θ ]13
[θ ]14
[θ ]15
[θ ]16
[θ ]17
[θ ]18
[θ ]19

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 2 2 2 2 2 6 2 0 2 2 2 0 0 0 0
6 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 4 4 0 4 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(60)
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and the 11 × 16 part (FPM2) concerning chiral proligands only is represented as
follows:

FPM2 =

[θ ]20
[θ ]21
[θ ]22
[θ ]23
[θ ]24
[θ ]25
[θ ]26
[θ ]27
[θ ]28
[θ ]29
[θ ]30

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 2 2 2 4 4 0 4 2 0 0 0 2 2 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 8 8 0 8 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (61)

The respective columns in FPM1 and FPM2 are aligned in accord with the SSGC2vσ̃̂I
(Eq. 16). The number of fixed points (fixed promolecule), i.e., ρ[θ]i Ǵ j

, appears as the
([θ ]i , j)-element of FPM1 or FPM2 at the intersection between the [θ ]i -row and the
Ǵ j -column. Note that the values shown in Eq. 59 appear in the 5th (Cs) columns of
FPM1 (in the [θ ]1-, [θ ]4-, and [θ ]8-row) and FPM2 (in the [θ ]23- and [θ ]28-row). As
for the SSGC2vσ̃̂I

indicating the columns of FPM1 and FPM2, see Eq. 16. As for the
partitions indicating the rows of FPM1 and FPM2, see Eqs. 28–57.

The calculations of FPM1 and FPM2 are conducted by the Maple system after
writing a Maple program in a similar way to the enumeration under point groups,
which was based on the original FPM method of the USCI approach [44].

The inverse mark table M−1
C2vσ̃̂I

is calculated by starting from the mark table MC2vσ̃̂I
,

which is identical with the mark table MD2h reported previously in [53,54]. Thus, we
obtain:

M−1
C2vσ̃̂I

= M−1
D2h

= (m ji )

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1/8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1/8 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1/8 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0
−1/8 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0
−1/8 0 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0
−1/8 0 0 0 0 1/4 0 0 0 0 0 0 0 0 0 0
−1/8 0 0 0 0 0 1/4 0 0 0 0 0 0 0 0 0
−1/8 0 0 0 0 0 0 1/4 0 0 0 0 0 0 0 0
1/4 −1/4 0 0 −1/4 −1/4 0 0 1/2 0 0 0 0 0 0 0
1/4 0 −1/4 0 −1/4 0 −1/4 0 0 1/2 0 0 0 0 0 0
1/4 0 0 −1/4 0 −1/4 −1/4 0 0 0 1/2 0 0 0 0 0
1/4 −1/4 0 0 0 0 −1/4 −1/4 0 0 0 1/2 0 0 0 0
1/4 0 −1/4 0 0 −1/4 0 −1/4 0 0 0 0 1/2 0 0 0
1/4 0 0 −1/4 −1/4 0 0 −1/4 0 0 0 0 0 1/2 0 0
1/4 −1/4 −1/4 −1/4 0 0 0 0 0 0 0 0 0 0 1/2 0
−1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(62)
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According to Theorem 19.4 (coupled with Theorem 15.4) in [23], the FPMs are mul-
tiplied by the inverse M−1

C2vσ̃̂I
to give the following isomer-counting matrices (ICMs):

ICM1 = FPM1 × M−1
C2vσ̃̂I

=

[θ ]1
[θ ]2
[θ ]3
[θ ]4
[θ ]5
[θ ]6
[θ ]7
[θ ]8
[θ ]9
[θ ]10
[θ ]11
[θ ]12
[θ ]13
[θ ]14
[θ ]15
[θ ]16
[θ ]17
[θ ]18
[θ ]19

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 1/2 1/2 1/2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0

3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(63)

ICM2 = FPM2 × M−1
C2vσ̃̂I

=

[θ ]20
[θ ]21
[θ ]22
[θ ]23
[θ ]24
[θ ]25
[θ ]26
[θ ]27
[θ ]28
[θ ]29
[θ ]30

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0
1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0

3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1/2 1/2 1/2 0 0 0 0 0 0 0 0 0 0 0 0

3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 2 0 2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(64)

The ([θ ]i , j)-element of ICM1 (Eq. 63) or ICM2 (Eq. 64) represents the number
of quadruplets with the partition [θ ]i (i = 1–30) and the RS-stereoisomeric subgroup
Ǵ j (∈ SSGC2vσ̃̂I

, Eq. 16):

1. For example, the value 1/2 at the intersection between the [θ ]3-row and the first
column (C1-column) stems from the term 1

2 (A3p + A3p) (or other [θ ]3-terms),
which indicates the presence of one quadruplet of promolecules with the compo-
sition A3p (or A3p).

2. The value 3/2 at the intersection between the [θ ]7-row and the first column (C1-
column) stems from the term 3

2 (A2Bp + A2Bp) (or other [θ ]7-terms), which is
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interpreted to be 3× 1
2 (A2Bp+ABp). This means the presence of three quadruplets

of promolecules with the composition A2Bp (or A2Bp).
3. The value 3 at the intersection between the [θ ]30-row and the first column

(C1-column) stems from the term 3(pqrs + pqrs), which is interpreted to be
6 × 1

2 (pqrs + pqrs). This means the presence of six quadruplets of promolecules
with the composition pqrs (or pqrs).

4. On the other hand, The value 1 at the intersection between the [θ ]2-row and the 7-th
column (C

̂I -column) stems from the term A3B (or other [θ ]2-terms), which indi-
cates the presence of one quadruplet of promolecules with the composition A3B.
Note that the C

̂I -promolecule in this quadruplet belongs to a type-I stereoisogram
(chiral, RS-stereogenic, and ascleral).

6.2 The partial-cycle-index method of the USCI approach

The partial-cycle-index (PCI) method of the USCI approach, which has been originally
developed for the purpose of itemized enumeration under the point groups [23], can
be applied to the present enumeration under the RS-stereoisomeric group C2vσ̃̂I . For
an application of the PCI method to the RS-stereoisomeric group Tdσ̃̂I , see [48].

6.2.1 Partial cycle indices with chirality fittingness (PCI-CFs)

According to the USCI approach [23], the USCI-CFs listed in Table 3 are regarded as
subduced-cycle-indices (SCI-CFs) and collected to form a row vector:

SCI-CFC2vσ̃̂I (/C
̂I )

=
(

b4
1, b2

2, b2
2, b2

2, c2
2, c2

2, a4
1, c2

2, c4, a2
2 , a2

2 , a2
2 , c4, c4, b4, a4

)

(65)

PCI-CFs for enumerating quadruplets are calculated by using the SCI-CFC2vσ̃̂I (/C
̂I )

(Eq. 65) according to Def. 19.6 of [23]. The row vector (Eq. 65) is multiplied by the
inverse mark table M−1

C2vσ̃̂I
(Eq. 62) as follows:

SCI-CFC2vσ̃̂I (/C
̂I )

×M−1
C2vσ̃̂I

=
(

PCI-CF(C1), . . . , PCI-CF(Ǵ j ), . . . , PCI-CF(C2vσ̃̂I )
)

,

(66)
where Ǵ j runs to cover the SSGC2vσ̃̂I

(Eq. 16). The j-th component PCI-CF(Ǵ j ) of

Eq. 66 can be regarded as a polynomial, which is the PCI-CF for the subgroup Ǵ j

(∈ SSGC2vσ̃̂I
):

PCI-CF(C1)
1=

III

1

8
b4

1 − 1

8
a4

1 − 3

8
b2

2 + 3

4
a2

2 − 3

8
c2

2 + 3

4
c4 + 1

4
b4 − a4 (67)

PCI-CF(C2)
2=

III

1

4
b2

2 − 1

4
a2

2 − 1

4
c4 − 1

4
b4 + 1

2
a4 (68)

PCI-CF(Cσ̃ )
3=
II

1

4
b2

2 − 1

4
a2

2 − 1

4
c4 − 1

4
b4 + 1

2
a4 (69)
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PCI-CF(C′̃
σ )

4=
II

1

4
b2

2 − 1

4
a2

2 − 1

4
c4 − 1

4
b4 + 1

2
a4 (70)

PCI-CF(Cs)
5=
V

−1

4
a2

2 + 1

4
c2

2 − 1

2
c4 + 1

2
a4 (71)

PCI-CF(C′
s)

6=
V

−1

4
a2

2 + 1

4
c2

2 − 1

2
c4 + 1

2
a4 (72)

PCI-CF(C
̂I )

7=
I

1

4
a4

1 − 3

4
a2

2 + 1

2
a4 (73)

PCI-CF(Cσ̂ )
8=
I

−1

4
a2

2 + 1

4
c2

2 − 1

2
c4 + 1

2
a4 (74)

PCI-CF(C2v)
9=
V

1

2
c4 − 1

2
a4 (75)

PCI-CF(Csσ̃̂I )
10=
IV

1

2
a2

2 − 1

2
a4 (76)

PCI-CF(C′
sσ̃̂I

)
11=
IV

1

2
a2

2 − 1

2
a4 (77)

PCI-CF(C2̂I )
12=
I

1

2
a2

2 − 1

2
a4 (78)

PCI-CF(Csσ̃ σ̂ )
13=
IV

1

2
c4 − 1

2
a4 (79)

PCI-CF(C′
sσ̃ σ̂ )

14=
IV

1

2
c4 − 1

2
a4 (80)

PCI-CF(C2σ̃ )
15=
II

1

2
b4 − 1

2
a4 (81)

PCI-CF(C2vσ̃̂I )
16=
IV

a4 (82)

Note that a Roman numeral below each equality symbol represents the stereoiso-
gram type at issue (types I–V), as categorized in Table 3.

6.2.2 Generating functions for symmetry-itemized enumeration

According to the USCI approach (Theorem 19.6 of [23]), the ligand-inventory func-
tions (Eqs. 24–26) are introduced into the PCI-CFs (Eqs. 67–82). Thereby, the gener-
ating functions fǴ j

for the subgroup Ǵ j ∈ SSGC2vσ̃̂I
(Eq. 16) are obtained as follows:

fC1

1=
III

{

1

2
(A3p + A3p) + · · ·

}

[θ]3

+
{

3

2
(A2Bp + A2Bp) + · · ·

}

[θ]7

+
{

3

2
(A2pq + A2pq) + · · ·

}

[θ]9

+ {3(ABXp + ABXp) + · · · }[θ]11

+ {3ABpp + · · · }[θ]13
+

{

3

2
(ABp2 + ABp2) + · · ·

}

[θ]12
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+ {3(ABpq + ABpq) + · · · }[θ]14
+

{

3

2
(Ap2p + App2) + · · ·

}

[θ]16

+
{

3

2
(Ap2q + Ap2q) + · · ·

}

[θ]17

+
{

1

2
(Ap3 + Ap3) + · · ·

}

[θ]15

+ {3(Appq + Appq) + · · · }[θ]18
+ {3(Apqr + Apqr) + · · · }[θ]19

+
{

1

2
(p3p + pp3) + · · ·

}

[θ]21

+
{

1

2
(p3q + p3q) + · · ·

}

[θ]22

+
{

3

2
(p2pq + pp2q) + · · ·

}

[θ]24

+
{

3

2
(p2qq + p2qq) + · · ·

}

[θ]26

+
{

3

2
(p2qr + p2qr) + · · ·

}

[θ]27

+ {3(ppqr + ppqr) + · · · }[θ]29

+ {3(pqrs + pqrs) + · · · }[θ]30
(83)

fC2

2=
III

{

1

2
(A2p2 + A2p2) + · · ·

}

[θ]5

+
{

1

2
(p2q2 + p2q2) + · · ·

}

[θ]25

(84)

fCσ̃

3=
II

{

1

2
(A2p2 + A2p2) + · · ·

}

[θ]5

+
{

1

2
(p2q2 + p2q2) + · · ·

}

[θ]25

(85)

fCσ̃ ′
4=
II

{

1

2
(A2p2 + A2p2) + · · ·

}

[θ]5

+
{

1

2
(p2q2 + p2q2) + · · ·

}

[θ]25

(86)

fCs

5=
V

{

(A2pp) + · · ·
}

[θ]8
+ {2(ppqq) + · · · }[θ]28

(87)

fC′
s

6=
V

{

(A2pp) + · · ·
}

[θ]8
+ {2(ppqq) + · · · }[θ]28

(88)

fC
̂I

7=
I

{

(A3B) + · · ·
}

[θ]2
+

{

3(A2BX) + · · ·
}

[θ]6
+{6(ABXY) + · · · }[θ]10 (89)

fCσ̂

8=
I

{

(A2pp) + · · ·
}

[θ]8
+ {2(ppqq) + · · · }[θ]28

(90)

fC2v

9=
V

{

(p2p2) + · · ·
}

[θ]23
(91)

fCsσ̃̂I

10=
IV

{

(A2B2) + · · ·
}

[θ]4
(92)

fC′
sσ̃̂I

11=
IV

{

(A2B2) + · · ·
}

[θ]4
(93)

fC2̂I

12=
I

{

(A2B2) + · · ·
}

[θ]4
(94)

fCsσ̃ σ̂

13=
IV

{

(p2p2) + · · ·
}

[θ]23
(95)

fC′
sσ̃ σ̂

14=
IV

{

(p2p2) + · · ·
}

[θ]23
(96)

fC2σ̃

15=
II

{

1

2
(p4 + p4) + · · ·

}

[θ]20

(97)
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fC2vσ̃̂I

16=
IV

{

(A4) + · · ·
}

[θ]1
(98)

Note that a Roman numeral below each equality symbol represents the stereoiso-
gram type at issue (types I–V), as categorized in Table 3. Each pair of braces contains
terms having the same partition, which is shown in the subscript attached to the end-
ing brace. For example, the 1

2 (ABXp + ABXp) (Eq. 83) indicates the presence of one
quadruplet of promolecules with ABXp or ABXp ([θ ]11) under the RS-stereoisomeric-
group symmetry.

The calculations of the generating functions (Eqs. 83–98) are conducted by the
Maple system after writing a Maple program in a similar way to the enumeration under
point groups, which was based on the original PCI method of the USCI approach [45].

The generating function fǴ j
for the subgroup Ǵ j ( j = 1–16, Eqs. 83–98) corre-

sponds to the Ǵ j -columns ( j = 1–16) of the isomer-counting matrices, ICM1 (Eq. 63)
and ICM2 (Eq. 64). For example, the generating function fC2 (Ǵ2 = C2 in Eq. 84)
corresponds to the second columns of ICM1 (Eq. 63) and ICM2 (Eq. 64), so that
the terms appearing in fC2 correspond to the ([θ ]5, 2)-element of ICM1 and to the
([θ ]25, 2)-element of ICM2.

6.3 Type-itemized enumeration

6.3.1 Type-enumeration matrices

According to the categories shown in Eqs. 17–21, quadruplets are enumerated in an
itemized fashion, after the type-enumeration matrix (TEM) is defined. Let m ji be the
j i-element of the inverse mark table M−1

C2vσ̃̂I
(Eq. 62). The Ǵ j -row is tentatively fixed

and the row is summed up according to the categorization of type I–V as follows:

̂N (Tp)

j =
∑

Ǵi ∈SG[Tp]
m ji (99)

where SG[Tp] (Tp = I, II, III, IV, or V) is selected from Eqs. 17–21. All the elements
in the j-row are summed up to give:

̂N j =
∑

Ǵi ∈SSGC2vσ̃̂I

m ji = ̂N (I)
j + ̂N (II)

j + ̂N (III)
j + ̂N (IV)

j + ̂N (V)
j . (100)

Let us consider a 16 × 6 type-enumeration matrix (TEM) where the j-th row (TEM j )
as a row vector is represented as follows:

TEM j =
(

̂N j , ̂N (I)
j , ̂N (II)

j , ̂N (III)
j , ̂N (IV)

j , ̂N (V)
j

)

. (101)
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Then Ǵ j runs to cover the SSG (Eq. 16) so as to give 16 row vectors TEM j ( j = 1–16),
which are collected to give the following type-enumeration matrix (TEM):

TEMC2vσ̃̂I
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1/8 0 0 1/8 0 0
1/8 0 0 1/8 0 0
1/8 0 1/4 −1/8 0 0
1/8 0 1/4 −1/8 0 0
1/8 0 0 −1/8 0 1/4
1/8 0 0 −1/8 0 1/4
1/8 1/4 0 −1/8 0 0
1/8 1/4 0 −1/8 0 0
0 0 0 0 0 0
0 −1/4 −1/4 1/4 1/2 −1/4
0 −1/4 −1/4 1/4 1/2 −1/4
0 0 0 0 0 0
0 −1/4 −1/4 1/4 1/2 −1/4
0 −1/4 −1/4 1/4 1/2 −1/4
0 0 0 0 0 0
0 1/2 1/2 −1/2 −1 1/2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(102)

Because the FPM1 (Eq. 60) and the FPM2 (Eq. 61) consist of 16 columns, they are
multiplied by the TEM (Eq. 102) as a 16 × 6 matrix. Thereby, isomer-type-counting
matrices (ITCM1 and ITCM2) are obtained as follows:

ITCM1 = FPM1 × TEMC2vσ̃̂I
=

[θ ]1
[θ ]2
[θ ]3
[θ ]4
[θ ]5
[θ ]6
[θ ]7
[θ ]8
[θ ]9
[θ ]10
[θ ]11
[θ ]12
[θ ]13
[θ ]14
[θ ]15
[θ ]16
[θ ]17
[θ ]18
[θ ]19

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 1 0
1 1 0 0 0 0

1/2 0 0 1/2 0 0
3 1 0 0 2 0

3/2 0 1 1/2 0 0
3 3 0 0 0 0

3/2 0 0 3/2 0 0
3 1 0 0 0 2

3/2 0 0 3/2 0 0
6 6 0 0 0 0
3 0 0 3 0 0

3/2 0 0 3/2 0 0
3 0 0 3 0 0
3 0 0 3 0 0

1/2 0 0 1/2 0 0
3/2 0 0 3/2 0 0
3/2 0 0 3/2 0 0
3 0 0 3 0 0
3 0 0 3 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(103)
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ITCM2 = FPM2 × TEMC2vσ̃̂I
=

[θ ]20
[θ ]21
[θ ]22
[θ ]23
[θ ]24
[θ ]25
[θ ]26
[θ ]27
[θ ]28
[θ ]29
[θ ]30

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1/2 0 1/2 0 0 0
1/2 0 0 1/2 0 0
1/2 0 0 1/2 0 0
3 0 0 0 2 1

3/2 0 0 3/2 0 0
3/2 0 1 1/2 0 0
3/2 0 0 3/2 0 0
3/2 0 0 3/2 0 0
6 2 0 0 0 4
3 0 0 3 0 0
3 0 0 3 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(104)

Note that the six columns of each ITCM contain the numbers of total quadruplets
(the first column) and those of quadruplets of the respective types (the second to 6th
columns). Obviously, ITCM1 (Eq. 103) and ITCM2 (Eq. 104) can be alternatively
obtained by starting from ICM1 (Eq. 63) and ICM2 (Eq. 64), where the columns
corresponding to each type are summed up.

In place of the inverse mark table M−1
C2vσ̃̂I

used in Eq. 66, let us use the type-
enumeration matrix (TEM) shown in Eq. 102. Then, we obtain cycle indices for enu-
merating quadruples categorized with respect to five types:

SCI-CFC2vσ̃̂I (/C
̂I )

× TEMC2vσ̃̂I

=
(

CI-CF[G], CI-CF[I], CI-CF[II], CI-CF[III], CI-CF[IV], CI-CF[V]), (105)

where CI-CF[G] is the cycle index with chirality fittingness for gross enumeration,
while the remaining cycle indices are concerned with respective types.

These cycle indices CI-CF[I]–CI-CF[V] can be alternatively calculated by summing
up the PCI-CFs listed in Eqs. 67–82 in accord with SG[I]–SG[V] (Eqs. 17–21):

CI-CF[I] = PCI-CF

(

7
C

̂I

)

+ PCI-CF

(

8
Cσ̂

)

+ PCI-CF

(

12
C2̂I

)

(106)

CI-CF[II] = PCI-CF

(

3
Cσ̃

)

+ PCI-CF

(

4
C′̃

σ

)

+ PCI-CF

(

15
C2σ̃

)

(107)

CI-CF[III] = PCI-CF

(

1
C1

)

+ PCI-CF

(

2
C2

)

(108)

CI-CF[IV] = PCI-CF

(

10
Csσ̃̂I

)

+ PCI-CF

(

11
C′

sσ̃̂I

)

+ PCI-CF

(

13
Csσ̃ σ̂

)

+ PCI-CF

(

14
C′

sσ̃ σ̂

)

+ PCI-CF

(

16
C2vσ̃̂I

)

(109)

CI-CF[V] = PCI-CF

(

5
Cs

)

+ PCI-CF

(

6
C′

s

)

+ PCI-CF

(

9
C2v

)

(110)
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The calculations based on Eq. 105 and on Eqs. 106–110 give an identical set of
cycle indices with chirality fittingness as follows:

CI-CF[I] = 1

4
a4

1 − 1

2
a2

2 + 1

4
c2

2 + 1

2
a4 − 1

2
c4 (111)

CI-CF[II] = 1

2
b2

2 − 1

2
a2

2 − 1

2
c4 + 1

2
a4 (112)

CI-CF[III] = 1

8
b4

1 − 1

8
a4

1 − 1

8
b2

2 + 1

2
a2

2 − 3

8
c2

2 + 1

2
c4 − 1

2
a4 (113)

CI-CF[IV] = a2
2 − a4 + c4 (114)

CI-CF[V] = 1

2
c2

2 − 1

2
a2

2 − 1

2
c4 + 1

2
a4 (115)

By applying the USCI approach (Theorem 19.6 of [23]) in a modified fashion, the
ligand-inventory functions (Eqs. 24–26) are introduced into the CI-CFs (Eqs. 111–
115). Thereby, the generating functions for type I to type V are obtained as follows:

f [I] = fC
̂I
+ fCσ̂ + fC2̂I

=
{

(A3B) + · · ·
}

[θ]2
+

{

3(A2BX) + · · ·
}

[θ]6
+ {6(ABXY) + · · · }[θ]10

+
{

(A2pp) + · · ·
}

[θ]8
+{2(ppqq) + · · · }[θ]28

+
{

(A2B2) + · · ·
}

[θ]4
(116)

f [II] = fCσ̃ + fCσ̃ ′ + fC2σ̃

=
{

(A2p2 + A2p2) + · · ·
}

[θ]5
+

{

(p2q2 + p2q2) + · · ·
}

[θ]25

+
{

1

2
(p4 + p4) + · · ·

}

[θ]20

(117)

f [III] = fC1 + fC2

=
{

1

2
(A3p + A3p) + · · ·

}

[θ]3

+
{

3

2
(A2Bp + A2Bp) + · · ·

}

[θ]7

+
{

3

2
(A2pq + A2pq) + · · ·

}

[θ]9

+ {3(ABXp + ABXp) + · · · }[θ]11

+ {3ABpp + · · · }[θ]13
+

{

3

2
(ABp2 + ABp2) + · · ·

}

[θ]12

+ {3(ABpq + ABpq) + · · · }[θ]14
+

{

3

2
(Ap2p + App2) + · · ·

}

[θ]16

+
{

3

2
(Ap2q + Ap2q) + · · ·

}

[θ]17

+
{

1

2
(Ap3 + Ap3) + · · ·

}

[θ]15

+ {3(Appq + Appq) + · · · }[θ]18
+ {3(Apqr + Apqr) + · · · }[θ]19

+
{

1

2
(p3p + pp3) + · · ·

}

[θ]21

+
{

1

2
(p3q + p3q) + · · ·

}

[θ]22
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+
{

3

2
(p2pq + pp2q) + · · ·

}

[θ]24

+
{

3

2
(p2qq + p2qq) + · · ·

}

[θ]26

+
{

3

2
(p2qr + p2qr) + · · ·

}

[θ]27

+ {3(ppqr + ppqr) + · · · }[θ]29

+ {3(pqrs + pqrs) + · · · }[θ]30

+
{

1

2
(A2p2 + A2p2) + · · ·

}

[θ]5

+
{

1

2
(p2q2 + p2q2) + · · ·

}

[θ]25

(118)

f [IV] = fCsσ̃̂I
+ fC′

sσ̃̂I
+ fCsσ̃ σ̂ + fC′

sσ̃ σ̂
+ fC2vσ̃̂I

=
{

2(A2B2) + · · ·
}

[θ]4
+

{

2(p2p2) + · · ·
}

[θ]23
+

{

(A4) + · · ·
}

[θ]1
(119)

f [V] = fCs + fC′
s
+ fC2v

=
{

2(A2pp) + · · ·
}

[θ]8
+ {4(ppqq) + · · · }[θ]28

+
{

(p2p2) + · · ·
}

[θ]23
(120)

These generating functions contain equivalent values to those of ITCM1 (Eq. 103) and
ITCM2 (Eq. 104). Note that each of the second (type I) to 6th (type V) columns of
these ITCMs contains the coefficients of terms appearing in the generating function
of the type at issue.

Alternatively, another set of generating functions identical with Eqs. 116–120 can
be calculated by starting from the generating functions of the respective subgroups
(Eqs. 83–98), which are summed up in accord with SG[I]–SG[V] (Eqs. 17–21).

7 Catalogs of promolecules derived from the oxirane skeleton

7.1 Type-I promolecules

The representative promolecules of type-I stereoisograms, the numbers of which are
collected in the second columns of ITCM1 (Eq. 103) and ITCM2 (Eq. 104) or equiva-
lently in the generating function for type I ( f [I], Eq. 116), are depicted in Fig. 7. They
are itemized with respect to RS-stereoisomeric groups, i.e., C

̂I (Eq. 89), Cσ̂ (Eq. 90),
and C2̂I (Eq. 94), the values of which are also listed in the 7th, 8th, and 12th columns
of ICM1 (Eq. 63) and ICM2 (Eq. 64).

For example, one promolecule 10 with the partition [θ ]2 belongs to the RS-
stereoisomeric group C

̂I , where the number of RS-stereoisomers is shown at the inter-
section between the [θ ]2-row and the 7th (C

̂I ) column in ICM1 (Eq. 63) or equivalently
appears as the coefficient of the term A3B ([θ ]2) contained in the generating function
fC

̂I
(Eq. 89). The number 3 of the term 3A2BX ([θ ]6) appearing in fC

̂I
(Eq. 89)

correspond to the promolecules 11, 12, and 13. For this value, see also the intersection
between the [θ ]6-row and the 7th (C

̂I ) column in ICM1 (Eq. 63). On the other hand,
the number 6 of the term 6ABXY ([θ ]10) appearing in fC

̂I
(Eq. 89) correspond to the

promolecules 14–19. For this value, see also the intersection between the [θ ]10-row
and the 7th (C

̂I ) column in ICM1 (Eq. 63).
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Fig. 7 Representative promolecules for type-I stereoisograms of oxiranes. Each representative is attached
by a partition and characterized by a RS-stereoisomeric group, a point group, RS-permutation group, and a
stereoisogram type

Each of the representatives Fig. 7 is accompanied with a quadruplet of promole-
cules, which are contained in a type-I stereoisogram shown in Fig. 6. Such a type-I
stereoisogram is characterized by chirality, RS-stereogenicity, and asclerality, so that
an enantiomeric relationship is coincident with an RS-diastereomeric relationship as
indicated by diagonal equality symbols.

For example, 14 (= 3) belonging to the RS-stereoisomeric group C
̂I generates a

type-I stereoisogram shown in Fig. 5. Another example of a type-I stereoisogram is
shown in Fig. 8. The enantiomeric relationship between 23 and 23 is coincident with
an RS-diastereomeric relationship between 23 and 24 (= 23). The promolecule 23 is
ascleral so that it is self-holantimeric with 24 (=23), as indicated by diagonal equality
symbols.

The promolecule 23 with the partition [θ ]4 belongs to the RS-stereoisomeric group
C2̂I , to the point group C2, and to the RS-permutation group C2. The correspond-
ing stereoisogram exhibits type-I properties, as shown in Fig. 8. The enantiomeric
relationship between 23 and 23 is coincident with the RS-diastereomeric relationship
between 23 and 24 (= 23).

7.2 Type-II promolecules

The numbers of quadruplets having type-II stereoisograms are shown in the third
columns of ITCM1 (Eq. 103) and ITCM2 (Eq. 104) or equivalently in the generating
function for type II ( f [II], Eq. 117). The representative promolecules of the quadruplets
of type II are depicted in Fig. 9. They are itemized with respect to RS-stereoisomeric
groups, i.e., Cσ̃ (Eq. 85), C′̃

σ (Eq. 86), C2σ̃ (Eq. 97), the values of which are also listed
in the third, 4th, and 15th columns of ICM1 (Eq. 63) and ICM2 (Eq. 64).
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Fig. 8 Stereoisogram of type I
derived from the oxirane
skeleton 2, where achiral
proligand A’s are placed at
positions 1 and 4, while achiral
proligands B’s at positions 2 and
3. The reference promolecule 23
belongs to the RS-stereoisomeric
group C2̂I

Fig. 9 Representative promolecules for type-II stereoisograms of oxiranes. Each representative is attached
by a partition and characterized by a RS-stereoisomeric group, a point group, RS-permutation group, and a
stereoisogram type

Note that a stereoisogram of type II consists of one pair of enantiomers, which is
counted once under the action of RS-stereoisomeric groups. For example, one pro-
molecule 25 with the partition [θ ]5 belongs to the RS-stereoisomeric group Cσ̃ . The
number is shown at the intersection between the [θ ]5-row and the 3rd (Cσ̃ ) column in
ICM1 (Eq. 63), where the value 1

2 indicates the presence of one quadruplet because of
the term 1

2 (A2p2 + A2p2). The value 1
2 appears equivalently as the coefficient of the

term 1
2 (A2p2 + A2p2) ([θ ]5) contained in the generating function fCσ̃ (Eq. 85).

All of the promolecules listed in Fig. 9 are characterized by type-II stereoisograms
under the RS-stereoisomeric group C2vσ̃̂I . For example, the promolecule 25 generates
a type-II stereoisogram shown in Fig. 10. The type-II stereoisogram (Fig. 10) is char-
acterized by chirality, RS-astereogenicity, and sclerality, so that the horizontal equality
symbols show the self-RS-diastereomeric relationship between 25 and 30 (= 25) or
between 25 and 30 (= 25). Note that 25 and 30 (or 25 and 30) are homomeric under
the action of C2, so that they coincide with each other under rotations.

The relationship between 25 and 26 or between 27 and 28 is determined not to be
stereoisomeric. This relationship is usually referred to as being constitutional isomeric
under the modern stereochemistry. The relationship 25/26 (or 27/28) is determined
more definitely to be isoskeletal-isomeric because the present proligand–promolecule
model emphasizes the oxirane skeleton as a common stereoskeleton.
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Fig. 10 Stereoisogram of type
II derived from the oxirane
skeleton 2, where achiral
proligand A’s are placed at
positions 1 and 2, while chiral
proligands p’s at positions 3 and
4. The reference promolecule 25
belongs to the RS-stereoisomeric
group Cσ̃

7.3 Type-III promolecules

The numbers of quadruplets having type-III stereoisograms are shown in the 4th
columns of ITCM1 (Eq. 103) and ITCM2 (Eq. 104) or equivalently in the generating
function for type III ( f [III], Eq. 118). The representative promolecules of the quadru-
plets of type III are depicted in Fig. 11 (for the partitions [θ ]1–[θ ]19) and Fig. 12
(for the partitions [θ ]20–[θ ]30). They are itemized with respect to RS-stereoisomeric
groups, i.e., C1 (Eq. 83) and C2 (Eq. 84), the values of which are also listed in the first
and second columns of ICM1 (Eq. 63) and ICM2 (Eq. 64).

Although a stereoisogram of type III consists of two pair of enantiomers, the quadru-
plet of the type-III stereoisogram is counted once under the action of RS-stereoisomeric
groups. For example, one promolecule 31 with the partition [θ ]3 belongs to the RS-
stereoisomeric group C1. The number appears at the intersection between the [θ ]3-row
and the first (C1) column in ICM1 (Eq. 63), where the value 1

2 indicates the presence of
one quadruplet according to the term 1

2 (A3p+A3p). The value 1
2 appears equivalently

as the coefficient of the term 1
2 (A3p+A3p) ([θ ]3) contained in the generating function

fC1 (Eq. 83).
All of the promolecules listed in Figs. 11 and 12 are characterized by type-III

stereoisograms under the RS-stereoisomeric group C2vσ̃̂I . For example, the promole-
cule 31 generates a type-III stereoisogram shown in Fig. 13. The type-III stereoisogram
(Fig. 13) is characterized by chirality, RS-stereogenicity, and sclerality, so that there
appear no equality symbols in the vertical, horizontal, and diagonal directions.

7.4 Type-IV promolecules

The numbers of quadruplets having type-IV stereoisograms are shown in the 5th
columns of ITCM1 (Eq. 103) and ITCM2 (Eq. 104) or equivalently in the gener-
ating function for type IV ( f [IV], Eq. 119). The representative promolecules of the
quadruplets of type IV are depicted in Fig. 14. They are itemized with respect to
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Fig. 11 Representative promolecules for type-III stereoisograms of oxiranes (List 1). Each representative
is attached by a partition and characterized by a RS-stereoisomeric group, a point group, RS-permutation
group, and a stereoisogram type
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Fig. 12 Representative promolecules for type-III stereoisograms of oxiranes (List 2). Each representative
is attached by a partition and characterized by a RS-stereoisomeric group, a point group, RS-permutation
group, and a stereoisogram type

Fig. 13 Stereoisogram of type
III derived from the oxirane
skeleton 2, where achiral
proligand A’s are placed at
positions 1, 2, and 3, while a
chiral proligand p at position 4.
The reference promolecule 31
belongs to the RS-stereoisomeric
group C1
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Fig. 14 Representative promolecules for type-IV stereoisograms of oxiranes. Each representative is
attached by a partition and characterized by a RS-stereoisomeric group, a point group, RS-permutation
group, and a stereoisogram type

Fig. 15 Stereoisogram of type
IV derived from the oxirane
skeleton 2, where achiral
proligand A’s are placed at
positions 1 and 2, while achiral
proligands B at position 3 and 4.
The reference promolecule 101
belongs to the RS-stereoisomeric
group C2vσ̃̂I

RS-stereoisomeric groups, i.e., Csσ̃̂I (Eq. 92), C′
sσ̃̂I

(Eq. 93), Csσ̃ σ̂ (Eq. 95), C′
sσ̃ σ̂

(Eq. 96), and C2vσ̃̂I (Eq. 98), the values of which are also listed in the 10th, 11th,
13th, 14th and 16th columns of ICM1 (Eq. 63) and ICM2 (Eq. 64).

Because a stereoisogram of type IV consists of one achiral promolecule, the quadru-
plet of the type-IV stereoisogram is counted once under the action of RS-stereoisomeric
groups. For example, one promolecule 101 with the partition [θ ]4 belongs to the RS-
stereoisomeric group Csσ̃̂I . The number appears at the intersection between the [θ ]4-
row and the 10th (Csσ̃̂I ) column in ICM1 (Eq. 63), where the value 1 indicates the
presence of one quadruplet according to the term A2B2. The value 1 appears equiva-
lently as the coefficient of the term A2B2 ([θ ]4) contained in the generating function
fCsσ̃̂I

(Eq. 92).
All of the promolecules listed in Fig. 14 are characterized by type-IV stereoisograms

under the RS-stereoisomeric group C2vσ̃̂I . For example, the promolecule 101 gener-
ates a type-IV stereoisogram shown in Fig. 15. The type-IV stereoisogram (Fig. 15)
is characterized by achirality, RS-astereogenicity, and asclerality so that the four pro-
molecules in the type-IV stereoisogram are identical with one another to give a single
promolecule.

7.5 Type-V promolecules

The numbers of quadruplets having type-V stereoisograms are shown in the 6th
columns of ITCM1 (Eq. 103) and ITCM2 (Eq. 104) or equivalently in the generating
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Fig. 16 Representative promolecules for type-V stereoisograms of oxiranes. Each representative is attached
by a partition and characterized by a RS-stereoisomeric group, a point group, RS-permutation group, and a
stereoisogram type

function for type V ( f [V], Eq. 120). The representative promolecules of the quadruplets
of type V are depicted in Fig. 16. They are itemized with respect to RS-stereoisomeric
groups, i.e., Cs (Eq. 87), C′

s (Eq. 88), and C2v (Eq. 91), the values of which are also
listed in the 5th, 6th, and 9th columns of ICM1 (Eq. 63) and ICM2 (Eq. 64).

Although a stereoisogram of type V consists of two achiral promolecules, the
quadruplet of the type-V stereoisogram is counted once under the action of RS-
stereoisomeric groups. For example, one promolecule 107 with the partition [θ ]8
belongs to the RS-stereoisomeric group Cs . The number appears at the intersection
between the [θ ]8-row and the 5th (Cs) column in ICM1 (Eq. 63), where the value
1 indicates the presence of one quadruplet according to the term A2pp. The value
1 appears equivalently as the coefficient of the term A2pp ([θ ]8) contained in the
generating function fCs (Eq. 87).

All of the promolecules listed in Fig. 16 are characterized by type-V stereoisograms
under the RS-stereoisomeric group C2vσ̃̂I . For example, the promolecule 107 gener-
ates a type-V stereoisogram shown in Fig. 17. The type-V stereoisogram (Fig. 17) is
characterized by achirality, RS-stereogenicity, and sclerality.

The type-V stereoisograms of the promolecules shown in Fig. 16 can be regarded
as being pseudoasymmetric in an extended fashion, because the oxirane skeleton with
A2pp etc. at the four positions (107) exhibits achirality but RS-stereogenicity. Thereby,
there emerges a pair of RS-diastereomers 107/114. On the other hand, a tetrahedral
skeleton with ABpp etc. at the four positions exhibits achirality but RS-stereogenicity,
so that there emerges a pair of RS-diastereomers due to pseudoasymmetry. Note that
the oxirane skeleton is selected as a stereoskeleton, just as the tetrahedral skeleton is
selected as a stereoskeleton in accord with the proligand–promolecule model.
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Fig. 17 Stereoisogram of type
V derived from the oxirane
skeleton 2, where achiral
proligand A’s are placed at
positions 1 and 2, while chiral
proligands p’s at position 3 and
4. The reference promolecule
107 belongs to the
RS-stereoisomeric group Cs

The extended pseudoasymmetry of 107 cannot be detected so long as we obey the
modern stereochemistry, because the modern stereochemistry does not adopt the oxi-
rane skeleton as a ‘stereogenic unit’. On the other hand, the pseudoasymmetry of 108
can be detected even in the modern stereochemistry, because a carbon atom attached
by a pair of p/p can be regarded as a ‘pseudoasymmetric center’, i.e., one of ‘stere-
ogenic units’, in the light of the conventional terminology. To develop comprehensive
discussions on stereochemistry, however, even the case of 108 should be regarded
as an extended pseudoasymmetric case, where the oxirane skeleton 2 is taken into
consideration in a parallel way to the case of 107.

8 Combinatorial enumeration under subgroups

8.1 Enumeration of oxiranes under the point group C2v

8.1.1 The FPM method

Suppose that the oxirane skeleton 2 is considered to belong to the point group C2v in
place of the RS-stereoisomeric group C2vσ̃̂I . The four positions of 2 construct an orbit
governed by the coset representation C2v(/C1) under the point group C2v in place of
the coset representation C2vσ̃̂I (/C

̂I ) under the RS-stereoisomeric group C2vσ̃̂I .
The point group C2v has the following non-redundant set of subgroups (SSG):

SSGC2v =
{

1
C1,

2
C2,

5
Cs,

6
C′

s,
9

C2v

}

, (121)

where the subgroups are aligned in the ascending order of their orders and attached
by the sequential numbers of the subgroups listed in Eq. 16. (cf. SG[III] in Eq. 19 and
SG[V] in Eq. 21). The mark table MC2v (Table A.5 of [23]) and the inverse mark table
M−1

C2v
(Table B.5 of [23]) are cited for the sake of convenience as follows:
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MC2v = MC2σ̃ =

⎛

⎜

⎜

⎜

⎜

⎝

4 0 0 0 0
2 2 0 0 0
2 0 2 0 0
2 0 0 2 0
1 1 1 1 1

⎞

⎟

⎟

⎟

⎟

⎠

(122)

M−1
C2v

= M−1
C2σ̃

=

⎛

⎜

⎜

⎜

⎜

⎝

1
4 0 0 0 0

− 1
4

1
2 0 0 0

− 1
4 0 1

2 0 0
− 1

4 0 0 1
2 0

1
2 − 1

2 − 1
2 − 1

2 1

⎞

⎟

⎟

⎟

⎟

⎠

. (123)

The USCI-CFs corresponding to C2v(/C1) are obtained according to the USCI
approach (Table E.5 of Ref. [23]). These USCI-CFs are regarded as SCI-CFs of
the symmetry-restricted skeletons derived from 2, so that the subduced-cycle-indices
(SCI-CFs) are obtained to form the following row vector:

SCI-CFC2v(/C1) =
(

b4
1, b2

2, c2
2, c2

2, c4

)

. (124)

Compare this vector with SCI-CFC2vσ̃̂I (/C
̂I )

(Eq. 65).
The ligand-inventory functions (Eqs. 24–26) are introduced into each SCI-CF col-

lected in SCI-CFC2v(/C1) (Eq. 124). Thereby, the corresponding fixed-point matrices,
FPM′

1 and FPM′
2 are obtained in a similar way to FPM1 (Eq. 60) and FPM2 (Eq. 61).

These FPM′
1 and FPM′

2 are multiplied by the inverse mark table M−1
C2v

(Eq. 123) to
give the corresponding isomer-counting matrices, ICM′

1 and ICM′
2, respectively:

ICM′
1 = FPM′

1 × M−1
C2v

=

[θ ]1
[θ ]2
[θ ]3
[θ ]4
[θ ]5
[θ ]6
[θ ]7
[θ ]8
[θ ]9
[θ ]10
[θ ]11
[θ ]12
[θ ]13
[θ ]14
[θ ]15
[θ ]16
[θ ]17
[θ ]18
[θ ]19

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1
4 0 0 0 0
4 0 0 0 0
6 2 2 2 0
6 2 0 0 0

12 0 0 0 0
12 0 0 0 0
12 0 4 4 0
12 0 0 0 0
24 0 0 0 0
24 0 0 0 0
12 0 0 0 0
24 0 0 0 0
24 0 0 0 0
4 0 0 0 0

12 0 0 0 0
12 0 0 0 0
24 0 0 0 0
24 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1
4 0 0 0 0

− 1
4

1
2 0 0 0

− 1
4 0 1

2 0 0
− 1

4 0 0 1
2 0

1
2 − 1

2 − 1
2 − 1

2 1

⎞

⎟

⎟

⎟

⎟

⎠

=

[θ ]1
[θ ]2
[θ ]3
[θ ]4
[θ ]5
[θ ]6
[θ ]7
[θ ]8
[θ ]9
[θ ]10
[θ ]11
[θ ]12
[θ ]13
[θ ]14
[θ ]15
[θ ]16
[θ ]17
[θ ]18
[θ ]19

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 1
1 0 0 0 0
1 0 0 0 0
0 1 1 1 0
1 1 0 0 0
3 0 0 0 0
3 0 0 0 0
1 0 2 2 0
3 0 0 0 0
6 0 0 0 0
6 0 0 0 0
3 0 0 0 0
6 0 0 0 0
6 0 0 0 0
1 0 0 0 0
3 0 0 0 0
3 0 0 0 0
6 0 0 0 0
6 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(125)
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ICM′
2 = FPM′

2 × M−1
C2v

=

[θ ]20
[θ ]21
[θ ]22
[θ ]23
[θ ]24
[θ ]25
[θ ]26
[θ ]27
[θ ]28
[θ ]29
[θ ]30

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 0 0
4 0 0 0 0
4 0 0 0 0
6 2 4 4 2

12 0 0 0 0
6 2 0 0 0

12 0 0 0 0
12 0 0 0 0
24 0 8 8 0
24 0 0 0 0
24 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1
4 0 0 0 0

− 1
4

1
2 0 0 0

− 1
4 0 1

2 0 0
− 1

4 0 0 1
2 0

1
2 − 1

2 − 1
2 − 1

2 1

⎞

⎟

⎟

⎟

⎟

⎠

=

[θ ]20
[θ ]21
[θ ]22
[θ ]23
[θ ]24
[θ ]25
[θ ]26
[θ ]27
[θ ]28
[θ ]29
[θ ]30

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1/2 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 1 1 2
3 0 0 0 0
1 1 0 0 0
3 0 0 0 0
3 0 0 0 0
2 0 4 4 0
6 0 0 0 0
6 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (126)

The columns of ICM′
1 (Eq. 125) or ICM′

2 (Eq. 126) are aligned in the order of
subgroups listed in SSGC2v (Eq. 121). The value 1/2 at the intersection between the
[θ ]20-row and 2nd C2-column corresponds to the term 1

2 (p4 + p4), which indicates
the presence of one pair of enantiomeric promolecules with the partition [θ ]20 and the
point group C2.

8.1.2 The PCI method

According to the PCI method of the USCI approach [23], the multiplication of the set
of SCI-CFs (Eq. 124) by the inverse mark table (Eq. 123), i.e., SCI-CFC2v(/C1)×M−1

C2v
,

gives the PCI-CFs as follows:

PCI-CF′(C1) = 1

4
b4

1 − 1

4
b2

2 − 1

2
c2

2 + 1

2
c4 (127)

PCI-CF′(C2) = 1

2
b2

2 − 1

2
c4 (128)

PCI-CF′(Cs) = 1

2
c2

2 − 1

2
c4 (129)

PCI-CF′(C′
s) = 1

2
c2

2 − 1

2
c4 (130)

PCI-CF′(C2v) = c4 (131)

The ligand-inventory functions (Eqs. 24–26) are introduced in the PCI-CFs
(Eqs. 127–131). The resulting equations are expanded to give the following gener-
ating functions:

f ′
C1

=
{

(A3p + A3p) + · · ·
}

[θ]3
+

{

3(A2Bp + A2Bp) + · · ·
}

[θ]7

+
{

3(A2pq + A2pq) + · · ·
}

[θ]9
+ {6(ABXp + ABXp) + · · · }[θ]11

+ {6ABpp + · · · }[θ]13
+

{

3(ABp2 + ABp2) + · · ·
}

[θ]12

+ {6(ABpq + ABpq) + · · · }[θ]14
+

{

3(Ap2p + App2) + · · ·
}

[θ]16
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+
{

3(Ap2q + Ap2q) + · · ·
}

[θ]17
+

{

(Ap3 + Ap3) + · · ·
}

[θ]15

+ {6(Appq + Appq) + · · · }[θ]18
+ {6(Apqr + Apqr) + · · · }[θ]19

+
{

(p3p + pp3) + · · ·
}

[θ]21
+

{

(p3q + p3q) + · · ·
}

[θ]22

+
{

3(p2pq + pp2q) + · · ·
}

[θ]24
+

{

3(p2qq + p2qq) + · · ·
}

[θ]26

+
{

3(p2qr+p2qr)+· · ·
}

[θ]27
+{6(ppqr+ppqr) + · · · }[θ]29

+{6(pqrs + pqrs)+· · · }[θ]30

+
{

(A2p2 + A2p2) + · · ·
}

[θ]5
+

{

(p2q2 + p2q2) + · · ·
}

[θ]25

+
{

(A3B) + · · ·
}

[θ]2
+

{

3(A2BX) + · · ·
}

[θ]6
+ {6(ABXY) + · · · }[θ]10

+
{

(A2pp) + · · ·
}

[θ]8
+ {2(ppqq) + · · · }[θ]28

(132)

f ′
C2

=
{

(A2p2 + A2p2) + · · ·
}

[θ]5
+

{

(p2q2 + p2q2) + · · ·
}

[θ]25

+
{

(A2B2) + · · ·
}

[θ]4
+

{

1

2
(p4 + p4) + · · ·

}

[θ]20

(133)

f ′
Cs

=
{

2(A2pp) + · · ·
}

[θ]8
+ {4(ppqq) + · · · }[θ]28

+
{

(A2B2) + · · ·
}

[θ]4
+

{

(p2p2) + · · ·
}

[θ]23
(134)

f ′
C′

s
=

{

2(A2pp) + · · ·
}

[θ]8
+ {4(ppqq) + · · · }[θ]28

+
{

(A2B2) + · · ·
}

[θ]4
+

{

(p2p2) + · · ·
}

[θ]23
(135)

f ′
C2v

=
{

2(p2p2) + · · ·
}

[θ]23
+

{

(A4) + · · ·
}

[θ]1
(136)

Each pair of braces in the generating functions (Eqs. 132–136) contains terms having
the same partition, which is shown in the subscript attached to the ending brace. For
example, the term {6(ABXp + ABXp) + · · · }[θ]11 (Eq. 132) indicates the presence
of twelve pairs of enantiomeric C1-promolecules with ABXp or ABXp ([θ ]11) under
the point-group symmetry. The value 6 due to the PCI method is identical with the
counterpart value due to the FPM method, which appears at the intersection between
the [θ ]11-row and the first C1-column of the isomer-counting matrix ICM′

1 (Eq. 125).
In general, the generating function f ′

G j
for the subgroup G j ( j = 1–5, Eqs. 132–136)

corresponds to the G j -columns ( j = 1–5) of the isomer-counting matrices, ICM′
1

(Eq. 125) and ICM′
2 (Eq. 126).

8.1.3 The RS-stereoisomeric group C2vσ̃̂I versus the point group C2v

The PCI-CFs for the point group C2v (Eqs. 127–131) can be derived by starting
the PCI-CFs for the RS-stereoisomeric group C2vσ̃̂I (Eqs. 67–82). Note that a set of
RS-stereoisomeric subgroups coalesces to give the common maximum point sub-

group. For example,
1

C1,
3

Cσ̃ ,
4

C′̃
σ ,

7
C

̂I , and
8

Cσ̂ coalesce to give the point group
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C1 as the common maximum subgroup. By referring to Fig. 6, each quadruplet of
type III or V under the RS-stereoisomeric group corresponds to two pairs of enan-
tiomers or two achiral promolecules under the point group, while each quadruplet
of type I, II, or IV under the RS-stereoisomeric group corresponds to one pair of
enantiomers or one achiral promolecule under the point group. It follows that the
following relationships between the PCI-CFs for the point group C2v (Eqs. 127–
131) and the PCI-CFs for the RS-stereoisomeric group C2vσ̃̂I (Eqs. 67–82) are
obtained:

PCI-CF′ (C1) = 2PCI-CF

(

1
C1

)

+ PCI-CF

(

3
Cσ̃

)

+ PCI-CF

(

4
C′̃

σ

)

+ PCI-CF

(

7
C

̂I

)

+ PCI-CF

(

8
Cσ̂

)

(137)

PCI-CF′ (C2) = 2PCI-CF

(

2
C2

)

+ PCI-CF

(

12
C2̂I

)

+ PCI-CF

(

15
C2σ̃

)

(138)

PCI-CF′ (Cs) = 2PCI-CF

(

5
Cs

)

+ PCI-CF

(

10
Csσ̃̂I

)

+ PCI-CF

(

14
C′

sσ̃ σ̂

)

(139)

PCI-CF′ (C′
s

) = 2PCI-CF

(

6
C′

s

)

+ PCI-CF

(

11
C′

sσ̃̂I

)

+ PCI-CF

(

13
Csσ̃ σ̂

)

(140)

PCI-CF′ (C2v) = 2PCI-CF

(

9
C2v

)

+ PCI-CF

(

16
C2vσ̃̂I

)

(141)

In a parallel way, the relationships between the generating functions for the point
group C2v (Eqs. 132–136) and those for the RS-stereoisomeric group C2vσ̃̂I (Eqs. 83–
98) are obtained as follows:

f ′
C1

= 2 fC1 + fCσ̃ + fC′̃
σ

+ fC
̂I
+ fCσ̂ (142)

f ′
C2

= 2 fC2 + fC2̂I
+ fC2σ̃ (143)

f ′
Cs

= 2 fCs + fCsσ̃̂I
+ fC′

sσ̃ σ̂
(144)

f ′
C′

s
= 2 fC′

s
+ fC′

sσ̃̂I
+ fCsσ̃ σ̂ (145)

f ′
C2v

= 2 fC2v + fC2vσ̃̂I
(146)

By keeping these relationships in mind, each column of ICM′
1 (Eq. 125) or ICM′

2
(Eq. 126) can be calculated by summing up an appropriate set of columns of ICM1
(Eq. 60) or ICM2 (Eq. 61). For example, the first (duplicated), third, 4th, 7th, and 8th
columns of ICM1 (Eq. 60) or ICM2 (Eq. 61) are summed up to give the first column
of ICM′

1 (Eq. 125) or ICM′
2 (Eq. 126) in agreement with Eq. 142 (cf. Eq. 137).

Each of the representative promolecules shown in Figs. 7 (type I), 9 (type II),
11 (type III, list 1), 12 (type III, list 2), 14 (type IV), and 16 (type V) contains the
data of relevant groups, e.g., C

̂I , C1, C1, I (RS-stereoisomeric group, point group,
RS-permutation group, and stereoisogram type) for the promolecule 10.
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The enumeration under the point group C2v (Eqs. 142–146) are divided into two
parts, i.e., chiral subgroups (Eqs. 142 and 143) and achiral subgroups (Eqs. 144–146).
See the division by a horizontal double line in Fig. 6.

The set of chiral subgroups (Eqs. 142 and 143) under the point-group symmetry
is correlated to stereoisograms of type I, II, and III, which are characterized by the
chirality along the vertical direction under the RS-stereoisomeric-group symmetry.

1. In accord with Eq. 142, the point group C1 corresponds to all the type-III (C1)
promolecules listed in Figs. 11 and 12 (except 98 and 99), all the type-II (Cσ̃

and C′̃
σ ) promolecules listed in Fig. 9 (except 29), and all the type-I (C

̂I and Cσ̂ )
promolecules listed in Fig. 7 (except 23). Note that these RS-stereoisomeric groups
contain C1 as the maximum point group.

2. In accord with Eq. 143, the point group C2 corresponds to the type-III (C2) pro-
molecules 98 and 99 shown in Fig. 12, the type-I (C2̂I ) promolecule 23 shown
in Fig. 7, and the type-II (C2σ̃ ) promolecule 29 shown in Fig. 9. Note that these
RS-stereoisomeric groups contain C2 as the maximum point group.

On the other hand, the set of achiral subgroups under the point-group symmetry
(Eqs. 144–146) is correlated to stereoisograms of type IV and V, which are character-
ized by the achirality along the vertical direction under the RS-stereoisomeric-group
symmetry.

1. In accord with Eq. 144, the point group Cs corresponds to the type-V (Cs) pro-
molecules 107, 109, and 110 shown in Fig. 16, the type-IV (Csσ̃̂I ) promolecule
101 shown in Fig. 14, and the type-IV (C′

sσ̃ σ̂ ) promolecule 104 shown in Fig. 14.
Note that these RS-stereoisomeric groups contain Cs as the maximum point group.

2. In accord with Eq. 145, the point group C′
s corresponds to the type-V (C′

s) pro-
molecules 108, 111, and 112 shown in Fig. 16, the type-IV (C′

sσ̃̂I
) promolecule

102 shown in Fig. 14, and the type-IV (Csσ̃ σ̂ ) promolecule 103 shown in Fig. 14.
Note that these RS-stereoisomeric groups contain C′

s as the maximum point group.
3. In accord with Eq. 146, the point group C2v corresponds to the type-V (C2v)

promolecule 113 shown in Fig. 16 and the type-IV (C2vσ̃̂I ) promolecule 105
shown in Fig. 14. Note that these RS-stereoisomeric groups contain C2v as the
maximum point group.

8.2 Enumeration of oxiranes under the RS-permutation group C2σ̃

8.2.1 The FPM method

Suppose that the oxirane skeleton 2 is considered to belong to the RS-permutation
group C2σ̃ in place of the RS-stereoisomeric group C2vσ̃̂I and of the point group
C2v . The four positions of 2 construct an orbit governed by the coset representation
C2σ̃ (/C1) under the RS-permutation group C2σ̃ in place of the coset representation
C2vσ̃̂I (/C

̂I ) under the RS-stereoisomeric group C2vσ̃̂I as well as in place of C2v(/C1)

under the point group C2v .
The RS-permutation group C2σ̃ has the following non-redundant set of subgroups

(SSG):
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SSGC2σ̃ =
{

1
C1,

2
C2,

3
Cσ̃ ,

4
C′̃

σ ,
15

C2σ̃

}

, (147)

which are type-II and type-III subgroups selected from Eq. 16 (cf. SG[II] in Eq. 18
and SG[III] in Eq. 19), where the subgroups are aligned in the ascending order of
their orders and attached by the sequential numbers of the subgroups listed in Eq. 16.
Because C2σ̃ is isomorphic to C2v , the mark table MC2σ̃ and its inverse M−1

C2σ̃
are

identical with Eqs. 122 and 123, respectively.
The USCI-CFs corresponding to C2σ̃ (/C1) are obtained according to the USCI

approach because of its isomorphism with the point group C2v (Table E.5 of Ref. [23]),
where all of the operations of the RS-permutation group C2σ̃ are determined to be ex-
chiral. These USCI-CFs are regarded as SCI-CFs of the symmetry-restricted skeletons
derived from 2, so that the subduced-cycle-indices (SCI-CFs) are obtained to form the
following row vector:

SCI-CFC2σ̃ (/C1) =
(

b4
1, b2

2, b2
2, b2

2, b4

)

, (148)

which consists of only hemispheric sphericity indices (b1, b2, and b4) because of the ex-
chirality of the RS-permutation group C2σ̃ . Compare this vector with SCI-CFC2v(/C1)

(Eq. 124) and with SCI-CFC2vσ̃̂I (/C
̂I )

(Eq. 65).
Among the ligand-inventory functions (Eqs. 24–26), the last one (Eq. 26) is effective

to the SCI-CF represented by Eq. 148. Thereby, the corresponding fixed-point matrices,
FPM′′

1 and FPM′′
2 are obtained in a similar way to FPM′

1 (Eq. 125) and FPM′
2 (Eq. 126)

as well as to FPM1 (Eq. 60) and FPM2 (Eq. 61). These FPM′′
1 and FPM′′

2 are multiplied
by the inverse mark table M−1

C2σ̃
(Eq. 123) to give the corresponding isomer-counting

matrices, ICM′′
1 and ICM′′

2, respectively:

ICM′′
1 = FPM′′

1 × M−1
C2σ̃

=

[θ ]1
[θ ]2
[θ ]3
[θ ]4
[θ ]5
[θ ]6
[θ ]7
[θ ]8
[θ ]9
[θ ]10
[θ ]11
[θ ]12
[θ ]13
[θ ]14
[θ ]15
[θ ]16
[θ ]17
[θ ]18
[θ ]19

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1
4 0 0 0 0
4 0 0 0 0
6 2 2 2 0
6 2 2 2 0

12 0 0 0 0
12 0 0 0 0
12 0 0 0 0
12 0 0 0 0
24 0 0 0 0
24 0 0 0 0
12 0 0 0 0
24 0 0 0 0
24 0 0 0 0
4 0 0 0 0

12 0 0 0 0
12 0 0 0 0
24 0 0 0 0
24 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1
4 0 0 0 0

− 1
4

1
2 0 0 0

− 1
4 0 1

2 0 0
− 1

4 0 0 1
2 0

1
2 − 1

2 − 1
2 − 1

2 1

⎞

⎟

⎟

⎟

⎟

⎠

=

[θ ]1
[θ ]2
[θ ]3
[θ ]4
[θ ]5
[θ ]6
[θ ]7
[θ ]8
[θ ]9
[θ ]10
[θ ]11
[θ ]12
[θ ]13
[θ ]14
[θ ]15
[θ ]16
[θ ]17
[θ ]18
[θ ]19

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 1
1 0 0 0 0
1 0 0 0 0
0 1 1 1 0
0 1 1 1 0
3 0 0 0 0
3 0 0 0 0
3 0 0 0 0
3 0 0 0 0
6 0 0 0 0
6 0 0 0 0
3 0 0 0 0
6 0 0 0 0
6 0 0 0 0
1 0 0 0 0
3 0 0 0 0
3 0 0 0 0
6 0 0 0 0
6 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(149)
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ICM′′
2 = FPM′′

2 × M−1
C2σ̃

=

[θ ]20
[θ ]21
[θ ]22
[θ ]23
[θ ]24
[θ ]25
[θ ]26
[θ ]27
[θ ]28
[θ ]29
[θ ]30

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1
4 0 0 0 0
4 0 0 0 0
6 2 2 2 0

12 0 0 0 0
6 2 2 2 0

12 0 0 0 0
12 0 0 0 0
24 0 0 0 0
24 0 0 0 0
24 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1
4 0 0 0 0

− 1
4

1
2 0 0 0

− 1
4 0 1

2 0 0
− 1

4 0 0 1
2 0

1
2 − 1

2 − 1
2 − 1

2 1

⎞

⎟

⎟

⎟

⎟

⎠

=

[θ ]20
[θ ]21
[θ ]22
[θ ]23
[θ ]24
[θ ]25
[θ ]26
[θ ]27
[θ ]28
[θ ]29
[θ ]30

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 1
1 0 0 0 0
1 0 0 0 0
0 1 1 1 0
3 0 0 0 0
0 1 1 1 0
3 0 0 0 0
3 0 0 0 0
6 0 0 0 0
6 0 0 0 0
6 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(150)

The columns of ICM′′
1 (Eq. 149) or ICM′′

2 (Eq. 150) are aligned in the order of
subgroups listed in SSGC2σ̃ (Eq. 147).

8.2.2 The PCI method

According to the PCI method of the USCI approach [23], the multiplication of the set
of SCI-CFs (Eq. 148) by the inverse mark table (Eq. 123), i.e., SCI-CFC2σ̃ (/C1)×M−1

C2σ̃
,

gives the PCI-CFs as follows:

PCI-CF′′(C1) = 1

4
b4

1 − 3

4
b2

2 + 1

2
b4 (151)

PCI-CF′′(C2) = 1

2
b2

2 − 1

2
b4 (152)

PCI-CF′′(Cσ̂ ) = 1

2
b2

2 − 1

2
b4 (153)

PCI-CF′′(C′̂
σ ) = 1

2
b2

2 − 1

2
b4 (154)

PCI-CF′′(C2σ̂ ) = b4 (155)

Among the ligand-inventory functions (Eqs. 24–26), the last one (Eq. 26) is intro-
duced into the PCI-CFs (Eqs. 151–155). The resulting equations are expanded to give
the following generating functions:

f ′′
C1

=
{

(A3p + A3p) + · · ·
}

[θ]3
+3(A2Bp + A2Bp) + · · ·

}

[θ]7

+
{

3(A2pq + A2pq) + · · ·
}

[θ]9
+ {6(ABXp + ABXp) + · · · }[θ]11

+ {6ABpp + · · · }[θ]13
+

{

3(ABp2 + ABp2) + · · ·
}

[θ]12

+ {6(ABpq + ABpq) + · · · }[θ]14
+

{

3(Ap2p + App2) + · · ·
}

[θ]16

+
{

3(Ap2q + Ap2q) + · · ·
}

[θ]17
+

{

(Ap3 + Ap3) + · · ·
}

[θ]15
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+ {6(Appq + Appq) + · · · }[θ]18
+ {6(Apqr + Apqr) + · · · }[θ]19

+
{

(p3p + pp3) + · · ·
}

[θ]21
+

{

(p3q + p3q) + · · ·
}

[θ]22

+
{

3(p2pq + pp2q) + · · ·
}

[θ]24
+

{

3(p2qq + p2qq) + · · ·
}

[θ]26

+
{

3(p2qr + p2qr) + · · ·
}

[θ]27
+ {6(ppqr + ppqr) + · · · }[θ]29

+ {6(pqrs + pqrs) + · · · }[θ]30

+
{

3(A2pp) + · · ·
}

[θ]8
+ {6(ppqq) + · · · }[θ]28

+
{

(A3B) + · · ·
}

[θ]2
+

{

3(A2BX) + · · ·
}

[θ]6

+ {6(ABXY) + · · · }[θ]10 (156)

f ′′
C2

=
{

(A2p2 + A2p2) + · · ·
}

[θ]5
+

{

(p2q2 + p2q2) + · · ·
}

[θ]25

+
{

(p2p2) + · · ·
}

[θ]23
+

{

(A2B2) + · · ·
}

[θ]4
(157)

f ′′
Cσ̃

=
{

(A2p2 + A2p2) + · · ·
}

[θ]5
+

{

(p2q2 + p2q2) + · · ·
}

[θ]25

+
{

(A2B2) + · · ·
}

[θ]4
+

{

(p2p2) + · · ·
}

[θ]23
(158)

f ′′
C′̃

σ
=

{

(A2p2 + A2p2) + · · ·
}

[θ]5
+

{

(p2q2 + p2q2) + · · ·
}

[θ]25

+
{

(A2B2) + · · ·
}

[θ]4
+

{

(p2p2) + · · ·
}

[θ]23
(159)

f ′′
C2σ̃

=
{

(p4 + p4) + · · ·
}

[θ]20
+

{

(A4) + · · ·
}

[θ]1
(160)

Each pair of braces in the generating functions (Eqs. 156–160) contains terms
having the same partition, which is shown in the subscript attached to the ending
brace. The generating function f ′′

G j
for the subgroup G j ( j = 1–5, Eqs. 156–160)

corresponds to the G j -columns ( j = 1–5) of the isomer-counting matrices, ICM′′
1

(Eq. 149) and ICM′′
2 (Eq. 150).

8.2.3 The RS-stereoisomeric group C2vσ̃̂I versus the RS-permutation group C2σ̃

The PCI-CFs for the RS-permutation group C2σ̃ (Eqs. 151–155) can be derived by
starting the PCI-CFs for the RS-stereoisomeric group C2vσ̃̂I (Eqs. 67–82). Each
RS-permutation subgroup is constructed on the basis of the fact that a set of RS-
stereoisomeric subgroups coalesces to give the common maximum RS-permutation

subgroup. For example,
1

C1,
5

Cs ,
6

C′
s ,

7
C

̂I , and
8

Cσ̂ coalesce to give the point group C1
as the common maximum subgroup.

It should be noted that enumeration under an RS-permutation group presumes
that a pair of RS-diastereomers or an RS-astereogenic promolecule (as a pair of
self-RS-diastereomers) is counted once. By referring to Fig. 6, each quadruplet of

123



J Math Chem (2015) 53:260–304 301

type II or III under the RS-stereoisomeric group corresponds to two pairs of RS-
diastereomers or two RS-astereogenic promolecules under the RS-permutation group,
while each quadruplet of type I, IV, or V under the RS-stereoisomeric group corre-
sponds to one pair of RS-diastereomers or one RS-astereogenic promolecule under
the RS-permutation group. Hence, the PCI-CFs for the RS-permutation group C2σ̃

(Eqs. 151–155) are calculated from the PCI-CFs for the RS-stereoisomeric group
C2vσ̃̂I (Eqs. 67–82) as follows:

PCI-CF′′ (C1) = 2PCI-CF

(

1
C1

)

+ PCI-CF

(

5
Cs

)

+ PCI-CF

(

6
C′

s

)

+ PCI-CF

(

7
C

̂I

)

+ PCI-CF

(

8
Cσ̂

)

(161)

PCI-CF′′ (C2) = 2PCI-CF

(

2
C2

)

+ PCI-CF

(

9
C2v

)

+ PCI-CF

(

12
C2̂I

)

(162)

PCI-CF′′ (Cσ̃ )=2PCI-CF

(

3
Cσ̃

)

+PCI-CF

(

10
Csσ̃̂I

)

+PCI-CF

(

13
Csσ̃ σ̂

)

(163)

PCI-CF′′ (C′̃
σ

)=2PCI-CF

(

4
C′̃

σ

)

+PCI-CF

(

11
C′

sσ̃̂I

)

+PCI-CF

(

14
C′

sσ̃ σ̂

)

(164)

PCI-CF′ (C2σ̃ ) = 2PCI-CF

(

15
C2σ̃

)

+ PCI-CF

(

16
C2vσ̃̂I

)

(165)

In a parallel way, the generating functions for the RS-permutation group C2σ̃

(Eqs. 156–160) can be calculated from those for the RS-stereoisomeric group C2vσ̃̂I
(Eqs. 83–98) as follows:

f ′′
C1

= 2 fC1 + fCs + fC′
s
+ fC

̂I
+ fCσ̂ (166)

f ′′
C2

= 2 fC2 + fC2v + fC2̂I
(167)

f ′′
Cσ̃

= 2 fCσ̃ + fCsσ̃̂I
+ fCsσ̃ σ̂ (168)

f ′′
C′̃

σ
= 2 fC′̃

σ
+ fC′

sσ̃̂I
+ fC′

sσ̃ σ̂
(169)

f ′′
C2σ̃

= 2 fC2σ̃ + fC2vσ̃̂I
(170)

Each column of ICM′′
1 (Eq. 149) or ICM′′

2 (Eq. 150) can be calculated by summing
up an appropriate set of columns of ICM1 (Eq. 60) or ICM2 (Eq. 61) in accord with
Eqs. 166–170. For example, the first (duplicated), 5th, 6th, 7th, and 8th columns of
ICM1 (Eq. 60) or ICM2 (Eq. 61) are summed up to give the first column of ICM′′

1
(Eq. 149) or ICM′′

2 (Eq. 150) in agreement with Eq. 166 (cf. Eq. 161).
The enumeration under the RS-permutation group C2σ̃ (Eqs. 166–170) are divided

into two parts, i.e., RS-stereogenic subgroups (Eqs. 166 and 167) and RS-astereogenic
subgroups (Eqs. 168–170). See the division by a vertical double line in Fig. 6.

The set of RS-stereogenic subgroups (Eqs. 166 and 167) under the RS-permutation-
group symmetry is correlated to stereoisograms of type I, III, and V, which are
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characterized by the RS-stereogenicity along the horizontal direction under the RS-
stereoisomeric-group symmetry.

1. In accord with Eq. 166, the RS-permutation group C1 corresponds to all the type-
III (C1) promolecules listed in Figs. 11 and 12 (except 98 and 99), the type-V (Cs

and C′
s) promolecules shown in Fig. 16 (except 113), and all the type-I (C

̂I and
Cσ̂ ) promolecules listed in Fig. 7 (except 23).

2. In accord with Eq. 167, the RS-permutation group C2 corresponds to the type-III
(C2) promolecules 98 and 99 shown in Fig. 12, the type-V (C2v) promolecule 113
shown in Fig. 16, and the type-I (C2̂I ) promolecule 23 shown in Fig. 7.

On the other hand, the set of RS-astereogenic subgroups under the RS-permutation-
group symmetry (Eqs. 168–170) is correlated to stereoisograms of type II and IV, which
are characterized by the RS-astereogenicity along the horizontal direction under the
RS-stereoisomeric-group symmetry.

1. In accord with Eq. 168, the RS-permutation group Cσ̃ corresponds to the type-II
(Cσ̃ ) promolecules 25 and 27 listed in Fig. 9, the type-IV (Csσ̃̂I ) promolecule 101
shown in Fig. 14, and the type-IV (Csσ̃ σ̂ ) promolecule 103 shown in Fig. 14.

2. In accord with Eq. 169, the RS-permutation group C′̃
σ corresponds to the type-II

(C′̃
σ ) promolecules 26 and 28 listed in Fig. 9, the type-IV (C′

sσ̃̂I
) promolecule 102

shown in Fig. 14, and the type-IV (C′
sσ̃ σ̂ ) promolecule 104 shown in Fig. 14.

3. In accord with Eq. 170, the RS-permutation group C2σ̃ corresponds to the type-II
(C2σ̃ ) promolecule 29 listed in Fig. 9 and the type-IV (C2vσ̃̂I ) promolecule 105
shown in Fig. 14.

9 Conclusion

On the basis of the proligand–promolecule model applied to an oxirane skeleton, the
RS-stereoisomeric group C2vσ̃̂I for the oxirane skeleton is defined by starting from
the point group C2v . Each oxirane derivative as a promolecule, which belongs to a
subgroup of C2vσ̃̂I , is considered to generate a stereoisogram composed of a quadru-
plet of promolecules. Because the RS-stereoisomeric group C2vσ̃̂I is isomorphic to
the point group D2h , the data necessary to combinatorial enumeration under C2vσ̃̂I ,
e.g., the non-redundant set of subgroups, the subduction of coset representations, and
the inverse of the mark table, are prepared by referring to the data of D2h . Thereby, the
fixed-point-matrix (FPM) method and the partial-cycle-index (PCI) method, which
have been originally developed to accomplish combinatorial enumeration under point
groups in the unit-subduced-cycle-index approach [23], are extended to meet the com-
binatorial enumeration under the RS-stereoisomeric group C2vσ̃̂I . The numbers of
inequivalent quadruplets under C2vσ̃̂I are calculated by the FPM method and the PCI
method, where each quadruplet contained in a stereoisogram is counted once during
this combinatorial enumeration. Such quadruples are itemized with respect to the sub-
groups of C2vσ̃̂I and categorized into five types (type I to V). The enumeration of
oxiranes under the point group C2v as well as under the RS-permutation group C2σ̃

is also conducted and the results are compared with those of the RS-stereoisomeric
group C2vσ̃̂I .

123



J Math Chem (2015) 53:260–304 303

References

1. A.-H. Li, L.-X. Dai, V.K. Aggarwai, Chem. Rev. 97, 2341–2372 (1997)
2. A. Padwa, S.S. Murphree, Arkivoc 3, 6–33 (2006)
3. V.K. Aggarwai, D.M. Badine, V.A. Moorthie, in Aziridines and Epoxides in Organic Synthesis, Chapter

1, ed. by A.K. Yudin (Wiley-VCH, Weinheim, 2006), pp. 1–35
4. T. Katsuki, K.B. Sharpless, J. Am. Chem. Soc. 102, 5974–5976 (1980)
5. Y. Gao, J.M. Klunder, R.M. Hanson, H. Masamune, S.Y. Ko, K.B. Sharpless, J. Am. Chem. Soc. 109,

5765–5780 (1987)
6. R.A. Johnson, K.B. Sharpless, in Comprehensive Organic Synthesis, vol. 7, ed. by B.M. Trost (Perga-

mon Press, New York, 1991), pp. 389–436
7. E. Höft, Top. Curr. Chem. 164, 63–77 (1993)
8. T. Katsuki, V. Martin, Organ. React. 48, 1–299 (1996)
9. Q.-H. Xia, H.-Q. Ge, C.-P. Ye, Z.-M. Liu, K.-X. Su, Chem. Rev. 105, 1603–1662 (2005)

10. K.B. Sharpless, Nobelprize.org. Novel Media AB2013. Web. 8 Apr 2014 (2001) Nobel lec-
ture: searching for new reactivity. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2001/
sharpless-lecture.html

11. S. Fujita, K. Imamura, H. Nozaki, Bull. Chem. Soc. Jpn. 44, 1975–1977 (1971)
12. W. McCoull, F. A. Davis, Synthesis 2000, 1347–1365 (2000)
13. I. Cano, E. Gómez-Bengoa, A. Landa, M. Maestro, A. Mielgo, I. Olaizola, M. Oiarbide, C. Palomo,

Angew. Chem. Intern. Ed. 51, 10856–10860 (2012)
14. S. Fujita, Theor. Chim. Acta 76, 247–268 (1989)
15. S. Fujita, Bull. Chem. Soc. Jpn. 63, 315–327 (1990)
16. S. Fujita, J. Am. Chem. Soc. 112, 3390–3397 (1990)
17. S. Fujita, J. Org. Chem. 67, 6055–6063 (2002)
18. S. Fujita, Chem. Rec. 2, 164–176 (2002)
19. S. Fujita, Bull. Chem. Soc. Jpn. 75, 1863–1883 (2002)
20. S. Fujita, J. Math. Chem. 5, 121–156 (1990)
21. S. Fujita, Bull. Chem. Soc. Jpn. 63, 203–215 (1990)
22. S. Fujita, Theor. Chim. Acta 82, 473–498 (1992)
23. S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry (Springer, Berlin, 1991)
24. S. Fujita, Diagrammatical Approach to Molecular Symmetry and Enumeration of Stereoisomers (Fac-

ulty of Science, University of Kragujevac, Kragujevac, 2007)
25. S. Fujita, Theor. Chem. Acc. 113, 73–79 (2005)
26. S. Fujita, Theor. Chem. Acc. 113, 80–86 (2005)
27. S. Fujita, Theor. Chem. Acc. 115, 37–53 (2006)
28. S. Fujita, Theor. Chem. Acc. 117, 353–370 (2007)
29. S. Fujita, J. Comput. Chem. Jpn. 6, 59–72 (2007)
30. S. Fujita, J. Comput. Chem. Jpn. 6, 73–90 (2007)
31. S. Fujita, Theor. Chem. Acc. 117, 339–351 (2007)
32. S. Fujita, MATCH Commun. Math. Comput. Chem. 57, 265–298 (2007)
33. S. Fujita, MATCH Commun. Math. Comput. Chem. 57, 299–340 (2007)
34. S. Fujita, J. Math. Chem. 43, 141–201 (2008)
35. S. Fujita, MATCH Commun. Math. Comput. Chem. 58, 5–45 (2007)
36. S. Fujita, Bull. Chem. Soc. Jpn. 83, 1–18 (2010)
37. S. Fujita, Combinatorial Enumeration of Graphs, Three-Dimensional Structures, and Chemical Com-

pounds (Faculty of Science, University of Kragujevac, Kragujevac, 2013)
38. S. Fujita, Tetrahedron 47, 31–46 (1991)
39. S. Fujita, J. Org. Chem. 69, 3158–3165 (2004)
40. S. Fujita, J. Math. Chem. 35, 265–287 (2004)
41. S. Fujita, J. Math. Chem. 33, 113–143 (2003)
42. S. Fujita, Tetrahedron 60, 11629–11638 (2004)
43. S. Fujita, MATCH Commun. Math. Comput. Chem. 54, 39–52 (2005)
44. S. Fujita, Bull. Chem. Soc. Jpn. 84, 1192–1207 (2011)
45. S. Fujita, Bull. Chem. Soc. Jpn. 85, 793–810 (2012)
46. S. Fujita, Bull. Chem. Soc. Jpn. 85, 811–821 (2012)
47. S. Fujita, J. Math. Chem. 52, 508–542 (2014)

123

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2001/sharpless-lecture.html
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2001/sharpless-lecture.html


304 J Math Chem (2015) 53:260–304

48. S. Fujita, J. Math. Chem. 52, 543–574 (2014)
49. S. Fujita, J. Math. Chem. 50, 2202–2222 (2012)
50. S. Fujita, J. Math. Chem. 50, 2168–2201 (2012)
51. S. Fujita, Tetrahedron Asymmetry 23, 623–634 (2012)
52. S. Fujita, MATCH Commun. Math. Comput. Chem. 61, 71–115 (2009)
53. S. Fujita, Tetrahedron 46, 365–382 (1990)
54. S. Fujita, J. Math. Chem. 32, 1–17 (2002)

123


	Stereoisograms for three-membered heterocycles: I. Symmetry-itemized enumeration of oxiranes under an RS-stereoisomeric group
	Abstract
	1 Introduction
	2 The proligand--promolecule model for the oxirane skeleton
	3 RS-stereoisomeric group for the oxirane skeleton
	4 Stereoisograms for the oxirane skeleton
	4.1 Construction of stereoisograms
	4.2 Stereoisograms of five types

	5 Subgroups of the RS-stereoisomeric group for the oxirane skeleton
	5.1 Isomorphism between the RS-stereoisomeric group C2vwidetildeσI"0362I and the point group D2h
	5.2 Type I to V assigned to the subgroups of the RS-stereoisomeric group C2vwidetildeσI"0362I
	5.3 Subduction of the coset representation C2vwidetildeσI"0362I(/CI"0362I)

	6 Combinatorial enumeration under the RS-stereoisomeric group C2vwidetildeσI"0362I
	6.1 The fixed-point matrix method of the USCI approach
	6.1.1 Fixed-point vectors for symmetry-itemized enumeration

	6.2 The partial-cycle-index method of the USCI approach
	6.2.1 Partial cycle indices with chirality fittingness (PCI-CFs)
	6.2.2 Generating functions for symmetry-itemized enumeration

	6.3 Type-itemized enumeration
	6.3.1 Type-enumeration matrices


	7 Catalogs of promolecules derived from the oxirane skeleton
	7.1 Type-I promolecules
	7.2 Type-II promolecules
	7.3 Type-III promolecules
	7.4 Type-IV promolecules
	7.5 Type-V promolecules

	8 Combinatorial enumeration under subgroups
	8.1 Enumeration of oxiranes under the point group C2v
	8.1.1 The FPM method
	8.1.2 The PCI method
	8.1.3 The RS-stereoisomeric group C2vwidetildeσI"0362I versus the point group C2v

	8.2 Enumeration of oxiranes under the RS-permutation group C2widetildeσ
	8.2.1 The FPM method
	8.2.2 The PCI method
	8.2.3 The RS-stereoisomeric group C2vwidetildeσI"0362I versus the RS-permutation group C2widetildeσ


	9 Conclusion
	References


